-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcnns.py
157 lines (131 loc) · 6.28 KB
/
cnns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import os
import torch
import torch.nn as nn
from opacus import PrivacyEngine
from train_utils import get_device, train, test
from data import get_data, get_scatter_transform, get_scattered_loader
from models import CNNS, get_num_params
from dp_utils import ORDERS, get_privacy_spent, get_renyi_divergence, scatter_normalization
from log import Logger
def main(dataset, augment=False, use_scattering=False, size=None,
batch_size=2048, mini_batch_size=256, sample_batches=False,
lr=1, optim="SGD", momentum=0.9, nesterov=False,
noise_multiplier=1, max_grad_norm=0.1, epochs=100,
input_norm=None, num_groups=None, bn_noise_multiplier=None,
max_epsilon=None, logdir=None, early_stop=True):
logger = Logger(logdir)
device = get_device()
train_data, test_data = get_data(dataset, augment=augment)
if use_scattering:
scattering, K, _ = get_scatter_transform(dataset)
scattering.to(device)
else:
scattering = None
K = 3 if len(train_data.data.shape) == 4 else 1
bs = batch_size
assert bs % mini_batch_size == 0
n_acc_steps = bs // mini_batch_size
# Batch accumulation and data augmentation with Poisson sampling isn't implemented
if sample_batches:
assert n_acc_steps == 1
assert not augment
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=mini_batch_size, shuffle=True, num_workers=1, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_data, batch_size=mini_batch_size, shuffle=False, num_workers=1, pin_memory=True)
rdp_norm = 0
if input_norm == "BN":
# compute noisy data statistics or load from disk if pre-computed
save_dir = f"bn_stats/{dataset}"
os.makedirs(save_dir, exist_ok=True)
bn_stats, rdp_norm = scatter_normalization(train_loader,
scattering,
K,
device,
len(train_data),
len(train_data),
noise_multiplier=bn_noise_multiplier,
orders=ORDERS,
save_dir=save_dir)
model = CNNS[dataset](K, input_norm="BN", bn_stats=bn_stats, size=size)
else:
model = CNNS[dataset](K, input_norm=input_norm, num_groups=num_groups, size=size)
model.to(device)
if use_scattering and augment:
model = nn.Sequential(scattering, model)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=mini_batch_size, shuffle=True,
num_workers=1, pin_memory=True, drop_last=True)
else:
# pre-compute the scattering transform if necessery
train_loader = get_scattered_loader(train_loader, scattering, device,
drop_last=True, sample_batches=sample_batches)
test_loader = get_scattered_loader(test_loader, scattering, device)
print(f"model has {get_num_params(model)} parameters")
if optim == "SGD":
optimizer = torch.optim.SGD(model.parameters(), lr=lr,
momentum=momentum,
nesterov=nesterov)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
privacy_engine = PrivacyEngine(
model,
sample_rate=bs / len(train_data),
alphas=ORDERS,
noise_multiplier=noise_multiplier,
max_grad_norm=max_grad_norm,
)
privacy_engine.attach(optimizer)
best_acc = 0
flat_count = 0
for epoch in range(0, epochs):
print(f"\nEpoch: {epoch}")
train_loss, train_acc = train(model, train_loader, optimizer, n_acc_steps=n_acc_steps)
test_loss, test_acc = test(model, test_loader)
if noise_multiplier > 0:
rdp_sgd = get_renyi_divergence(
privacy_engine.sample_rate, privacy_engine.noise_multiplier
) * privacy_engine.steps
epsilon, _ = get_privacy_spent(rdp_norm + rdp_sgd)
epsilon2, _ = get_privacy_spent(rdp_sgd)
print(f"ε = {epsilon:.3f} (sgd only: ε = {epsilon2:.3f})")
if max_epsilon is not None and epsilon >= max_epsilon:
return
else:
epsilon = None
logger.log_epoch(epoch, train_loss, train_acc, test_loss, test_acc, epsilon)
logger.log_scalar("epsilon/train", epsilon, epoch)
# stop if we're not making progress
if test_acc > best_acc:
best_acc = test_acc
flat_count = 0
else:
flat_count += 1
if flat_count >= 20 and early_stop:
print("plateau...")
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=['cifar10', 'fmnist', 'mnist'])
parser.add_argument('--size', default=None)
parser.add_argument('--augment', action="store_true")
parser.add_argument('--use_scattering', action="store_true")
parser.add_argument('--batch_size', type=int, default=2048)
parser.add_argument('--mini_batch_size', type=int, default=256)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--optim', type=str, default="SGD", choices=["SGD", "Adam"])
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--nesterov', action="store_true")
parser.add_argument('--noise_multiplier', type=float, default=1)
parser.add_argument('--max_grad_norm', type=float, default=0.1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--input_norm', default=None, choices=["GroupNorm", "BN"])
parser.add_argument('--num_groups', type=int, default=81)
parser.add_argument('--bn_noise_multiplier', type=float, default=6)
parser.add_argument('--max_epsilon', type=float, default=None)
parser.add_argument('--early_stop', action='store_false')
parser.add_argument('--sample_batches', action="store_true")
parser.add_argument('--logdir', default=None)
args = parser.parse_args()
main(**vars(args))