-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·218 lines (192 loc) · 6.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import argparse
from torch.backends import cudnn
import torch
from solver import Solver
from utils.dataloader import DataLoader
def str2bool(v):
return v.lower() in ("true")
def main(config):
# For fast training.
cudnn.benchmark = True
# Create directories if not exist.
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
if not os.path.exists(config.sample_dir):
os.makedirs(config.sample_dir)
if not os.path.exists(config.result_dir):
os.makedirs(config.result_dir)
loader = None
img_root = os.path.join(config.dataset_root, config.imgs_folder)
train_exp_csv_file = os.path.join(config.dataset_root, "training.csv")
train_dataset = DataLoader(
img_size=config.image_size, exp_classes=config.c_dim, is_transform=True
)
train_dataset.load_data(train_exp_csv_file, img_root)
loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
)
solve = Solver(loader, config)
solve.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument(
"--c_dim", type=int, default=5, help="dimension of domain labels (1st dataset)"
)
parser.add_argument("--image_size", type=int, default=128, help="image resolution")
parser.add_argument(
"--g_conv_dim",
type=int,
default=64,
help="number of conv filters in the first layer of G",
)
parser.add_argument(
"--d_conv_dim",
type=int,
default=64,
help="number of conv filters in the first layer of D",
)
parser.add_argument(
"--g_repeat_num", type=int, default=6, help="number of residual blocks in G"
)
parser.add_argument(
"--d_repeat_num", type=int, default=6, help="number of strided conv layers in D"
)
parser.add_argument(
"--lambda_cls",
type=float,
default=1,
help="weight for domain classification loss",
)
parser.add_argument(
"--lambda_rec", type=float, default=10, help="weight for reconstruction loss"
)
parser.add_argument(
"--lambda_regularization",
type=float,
default=10.0,
help="regularization R1 or gradient-penalty",
)
parser.add_argument(
"--regularization_type",
type=str,
default="gp",
choices=["R1", "gp"],
)
parser.add_argument(
"--lambda_d_strength",
type=float,
default=1.0,
help="weight for strength expr penalty",
)
parser.add_argument(
"--lambda_g_strength",
type=float,
default=1.0,
help="weight for strength expr penalty",
)
parser.add_argument(
"--lambda_expr",
type=float,
default=1.0,
help="weight for d learning latent coordinates",
)
parser.add_argument("--lambda_d_info", type=float, default=1.0)
parser.add_argument("--lambda_g_info", type=float, default=1.0)
parser.add_argument("--lambda_prediction", default=0.5, type=float)
parser.add_argument("--architecture_v2", default=False, type=bool)
parser.add_argument(
"--dataset_root",
type=str,
default="/srv/beegfs02/scratch/emotion_perception/data/csevim/datasets/affectnet",
help="dataset_root",
)
parser.add_argument(
"--imgs_folder", type=str, default="cropped_align_affectnet68lms"
)
parser.add_argument("--tridimensional", default=False, type=bool)
parser.add_argument(
"--parametrization",
default="linear",
choices=["linear", "gaussian"],
help="parametrization used, i.e, GANmut or GGANmut",
)
# Training configuration.
parser.add_argument("--batch_size", type=int, default=16, help="mini-batch size")
parser.add_argument(
"--num_iters",
type=int,
default=2000000,
help="number of total iterations for training D",
)
parser.add_argument(
"--num_iters_decay",
type=int,
default=100000,
help="number of iterations for decaying lr",
)
parser.add_argument(
"--g_lr", type=float, default=0.0001, help="learning rate for G"
)
parser.add_argument(
"--d_lr", type=float, default=0.0001, help="learning rate for D"
)
parser.add_argument(
"--n_critic", type=int, default=5, help="number of D updates per each G update"
)
parser.add_argument(
"--beta1", type=float, default=0.5, help="beta1 for Adam optimizer"
)
parser.add_argument(
"--beta2", type=float, default=0.999, help="beta2 for Adam optimizer"
)
parser.add_argument(
"--resume_iter", type=int, default=None, help="resume training from this step"
)
parser.add_argument(
"--n_r_l",
type=int,
default=5,
help="number per training batch of codes sampled outside the directions for GANmut, see paper",
)
parser.add_argument(
"--n_r_g",
type=int,
default=9,
help="# of condition randomly sampled in GGANmut training, see paper",
)
parser.add_argument(
"--cycle_loss",
type=str,
default="approximate",
choices=["approximate", "original"],
)
# Test configuration.
parser.add_argument(
"--test_iters", type=int, default=200000, help="test model from this step"
)
# Miscellaneous.
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument(
"--mode", type=str, default="train", choices=["train", "test", "print_axes"]
)
parser.add_argument("--use_tensorboard", type=str2bool, default=True)
# Directories.
parser.add_argument("--log_dir", type=str, default="GANmut/logs")
parser.add_argument("--model_save_dir", type=str, default="GANmut/models")
parser.add_argument("--sample_dir", type=str, default="GANmut/samples")
parser.add_argument("--result_dir", type=str, default="GANmut/results")
# Step size.
parser.add_argument("--log_step", type=int, default=100)
parser.add_argument("--sample_step", type=int, default=20000)
parser.add_argument("--model_save_step", type=int, default=2000)
parser.add_argument("--lr_update_step", type=int, default=1000)
config = parser.parse_args()
print(config)
main(config)