-
Notifications
You must be signed in to change notification settings - Fork 7
/
metal.c
1235 lines (1155 loc) · 54.2 KB
/
metal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* The MIT License
Copyright (C) 2022-2024 Giulio Genovese
Author: Giulio Genovese <giulio.genovese@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <htslib/kfunc.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcf.h>
#include <htslib/khash_str2int.h>
#include "kmin.h"
#include "bcftools.h"
#include "filter.h"
#define METAL_VERSION "2024-09-27"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
// http://github.com/MRCIEU/gwas-vcf-specification
#define NS 0
#define EZ 1
#define NC 2
#define ES 3
#define SE 4
#define LP 5
#define AF 6
#define AC 7
#define NE 8
#define I2 9
#define CQ 10
#define SIZE 11
static const char *id_str[SIZE + 1] = {"NS", "EZ", "NC", "ES", "SE", "LP", "AF", "AC", "NE", "I2", "CQ", "ED"};
static const char *desc_str[SIZE + 1] = {
"Variant-specific number of samples/individuals with called genotypes used to test association with specified "
"trait", // NS
"Z-score provided if it was used to derive the ES and SE fields", // EZ
"Variant-specific number of cases used to estimate genetic effect (binary traits only)", // NC
"Effect size estimate relative to the alternative allele", // ES
"Standard error of effect size estimate", // SE
"-log10 p-value for effect estimate", // LP
"Alternative allele frequency in trait subset", // AF
"Alternative allele count in the trait subset", // AC
"Variant-specific effective sample size", // NE
"Cochran's I^2 statistics", // I2
"Cochran's Q -log10 p-value", // CQ
"Effect size direction across studies"}; // ED
/****************************************
* FUNCTION TO COMPUTE LOG P-VALUES *
****************************************/
// Cody, W. J. Algorithm 715: SPECFUN–a portable FORTRAN package of special function routines and test drivers. ACM
// Trans. Math. Softw. 19, 22–30 (1993). http://doi.org/10.1145/151271.151273 ANORM function see pnorm_both() in
// http://github.com/wch/r-source/blob/trunk/src/nmath/pnorm.c see logndist() in
// http://github.com/statgen/METAL/blob/master/libsrc/MathStats.cpp
#define M_SQRT_32 5.656854249492380195206754896838 /* sqrt(32) */
#define M_1_SQRT_2PI 0.398942280401432677939946059934 /* 1/sqrt(2pi) */
// this function is equivalent to pnorm(-z, log.p = TRUE) but with lower precision for -37.5193 < z < -0.67448975
static double log_ndist(double z) {
const double a0 = 2.2352520354606839287E0;
const double a1 = 1.6102823106855587881E2;
const double a2 = 1.0676894854603709582E3;
const double a3 = 1.8154981253343561249E4;
const double a4 = 6.5682337918207449113E-2;
const double b0 = 4.720258190468824187E1;
const double b1 = 9.7609855173777669322E2;
const double b2 = 1.0260932208618978205E4;
const double b3 = 4.5507789335026729956E4;
const double c0 = 3.9894151208813466764E-1;
const double c1 = 8.8831497943883759412E0;
const double c2 = 9.3506656132177855979E1;
const double c3 = 5.9727027639480026226E2;
const double c4 = 2.4945375852903726711E3;
const double c5 = 6.8481904505362823326E3;
const double c6 = 1.1602651437647350124E4;
const double c7 = 9.8427148383839780218E3;
const double c8 = 1.0765576773720192317E-8;
const double d0 = 2.2266688044328115691E1;
const double d1 = 2.3538790178262499861E2;
const double d2 = 1.519377599407554805E3;
const double d3 = 6.485558298266760755E3;
const double d4 = 1.8615571640885098091E4;
const double d5 = 3.4900952721145977266E4;
const double d6 = 3.8912003286093271411E4;
const double d7 = 1.9685429676859990727E4;
const double p0 = 2.1589853405795699E-1;
const double p1 = 1.274011611602473639E-1;
const double p2 = 2.2235277870649807E-2;
const double p3 = 1.421619193227893466E-3;
const double p4 = 2.9112874951168792E-5;
const double p5 = 2.307344176494017303E-2;
const double q0 = 1.28426009614491121E0;
const double q1 = 4.68238212480865118E-1;
const double q2 = 6.59881378689285515E-2;
const double q3 = 3.78239633202758244E-3;
const double q4 = 7.29751555083966205E-5;
double y, xsq, xnum, xden, temp, del;
y = fabs(z);
if (z < -0.67448975) {
return log(ldexp(kf_erfc(z / M_SQRT2), -1));
} else if (z <= 0.67448975) {
xsq = z * z;
xnum = (((a4 * xsq + a0) * xsq + a1) * xsq + a2) * xsq + a3;
xden = (((xsq + b0) * xsq + b1) * xsq + b2) * xsq + b3;
temp = z * xnum / xden;
return log(0.5 - temp);
} else if (z <= M_SQRT_32) {
xnum = (((((((c8 * y + c0) * y + c1) * y + c2) * y + c3) * y + c4) * y + c5) * y + c6) * y + c7;
xden = (((((((y + d0) * y + d1) * y + d2) * y + d3) * y + d4) * y + d5) * y + d6) * y + d7;
temp = xnum / xden;
} else {
xsq = 1.0 / (z * z);
xnum = ((((p5 * xsq + p0) * xsq + p1) * xsq + p2) * xsq + p3) * xsq;
xden = ((((xsq + q0) * xsq + q1) * xsq + q2) * xsq + q3) * xsq;
temp = xsq * (xnum + p4) / (xden + q4);
temp = (M_1_SQRT_2PI - temp) / y;
}
xsq = ldexp(trunc(ldexp(y, 4)), -4);
del = (y - xsq) * (y + xsq);
return (-xsq * ldexp(xsq, -1)) - ldexp(del, -1) + log(temp);
}
#define M_2PI 6.283185307179586476925286766559 /* 2*pi */
// Wichura, M. J. Algorithm AS 241: The Percentage Points of the Normal Distribution. Applied Statistics 37, 477 (1988).
// http://doi.org/10.2307/2347330 PPND16 function (algorithm AS241) http://lib.stat.cmu.edu/apstat/241
// see qnorm5() in http://github.com/wch/r-source/blob/trunk/src/nmath/qnorm.c
// see ninv() in http://github.com/statgen/METAL/blob/master/libsrc/MathStats.cpp
// this function is equivalent to qnorm(log_p, log.p = TRUE)
static double inv_log_ndist(double log_p) {
const double a0 = 3.3871328727963666080E0;
const double a1 = 1.3314166789178437745E2;
const double a2 = 1.9715909503065514427E3;
const double a3 = 1.3731693765509461125E4;
const double a4 = 4.5921953931549871457E4;
const double a5 = 6.7265770927008700853E4;
const double a6 = 3.3430575583588128105E4;
const double a7 = 2.5090809287301226727E3;
const double b1 = 4.2313330701600911252E1;
const double b2 = 6.8718700749205790830E2;
const double b3 = 5.3941960214247511077E3;
const double b4 = 2.1213794301586595867E4;
const double b5 = 3.9307895800092710610E4;
const double b6 = 2.8729085735721942674E4;
const double b7 = 5.2264952788528545610E3;
const double c0 = 1.42343711074968357734E0;
const double c1 = 4.63033784615654529590E0;
const double c2 = 5.76949722146069140550E0;
const double c3 = 3.64784832476320460504E0;
const double c4 = 1.27045825245236838258E0;
const double c5 = 2.41780725177450611770E-1;
const double c6 = 2.27238449892691845833E-2;
const double c7 = 7.74545014278341407640E-4;
const double d1 = 2.05319162663775882187E0;
const double d2 = 1.67638483018380384940E0;
const double d3 = 6.89767334985100004550E-1;
const double d4 = 1.48103976427480074590E-1;
const double d5 = 1.51986665636164571966E-2;
const double d6 = 5.47593808499534494600E-4;
const double d7 = 1.05075007164441684324E-9;
const double e0 = 6.65790464350110377720E0;
const double e1 = 5.46378491116411436990E0;
const double e2 = 1.78482653991729133580E0;
const double e3 = 2.96560571828504891230E-1;
const double e4 = 2.65321895265761230930E-2;
const double e5 = 1.24266094738807843860E-3;
const double e6 = 2.71155556874348757815E-5;
const double e7 = 2.01033439929228813265E-7;
const double f1 = 5.99832206555887937690E-1;
const double f2 = 1.36929880922735805310E-1;
const double f3 = 1.48753612908506148525E-2;
const double f4 = 7.86869131145613259100E-4;
const double f5 = 1.84631831751005468180E-5;
const double f6 = 1.42151175831644588870E-7;
const double f7 = 2.04426310338993978564E-15;
double p, q, r, x;
p = exp(log_p);
q = p - 0.5;
if (fabs(q) <= 0.425) {
r = 0.180625 - q * q;
return q * (((((((a7 * r + a6) * r + a5) * r + a4) * r + a3) * r + a2) * r + a1) * r + a0)
/ (((((((b7 * r + b6) * r + b5) * r + b4) * r + b3) * r + b2) * r + b1) * r + 1.0);
}
r = q < 0 ? sqrt(-log_p) : sqrt(-log(1.0 - p));
if (r <= 5.0) { // for p >= 1.389e−11
r -= 1.6;
x = (((((((c7 * r + c6) * r + c5) * r + c4) * r + c3) * r + c2) * r + c1) * r + c0)
/ (((((((d7 * r + d6) * r + d5) * r + d4) * r + d3) * r + d2) * r + d1) * r + 1.0);
} else if (r <= 27) { // for p >= 2.51e-317
r -= 5.0;
x = (((((((e7 * r + e6) * r + e5) * r + e4) * r + e3) * r + e2) * r + e1) * r + e0)
/ (((((((f7 * r + f6) * r + f5) * r + f4) * r + f3) * r + f2) * r + f1) * r + 1.0);
} else if (r < 6.4e8) { // improvement from Martin Maechler
double s2 = -2 * log_p; // = -2*lp = 2s
double x2 = s2 - log(M_2PI * s2); // = xs_1
if (r < 36000) {
x2 = s2 - log(M_2PI * x2) - 2 / (2 + x2); // == xs_2
if (r < 840) { // 27 < r < 840
x2 = s2 - log(M_2PI * x2) + 2 * log1p(-(1 - 1 / (4 + x2)) / (2 + x2)); // == xs_3
if (r < 109) { // 27 < r < 109
x2 = s2 - log(M_2PI * x2) + 2 * log1p(-(1 - (1 - 5 / (6 + x2)) / (4 + x2)) / (2 + x2)); // == xs_4
if (r < 55) { // 27 < r < 55
x2 = s2 - log(M_2PI * x2)
+ 2 * log1p(-(1 - (1 - (5 - 9 / (8 + x2)) / (6 + x2)) / (4 + x2)) / (2 + x2)); // == xs_5
}
}
}
}
x = sqrt(x2);
} else {
return r * M_SQRT2;
}
return q < 0 ? -x : x;
}
// see pchisq() in http://github.com/wch/r-source/blob/trunk/src/nmath/pchisq.c
// see pgamma() in http://github.com/wch/r-source/blob/trunk/src/nmath/pgamma.c
// see chidist() in http://github.com/statgen/METAL/blob/master/libsrc/MathStats.cpp
// see kf_gammaq() in http://github.com/samtools/htslib/blob/develop/kfunc.c
#define KF_GAMMA_EPS 1e-14
#define KF_TINY 1e-290
// regularized lower incomplete gamma function, by series expansion
static double _kf_gammap(double s, double z) {
double sum, x;
int k;
for (k = 1, sum = x = 1.; k < 100; ++k) {
sum += (x *= z / (s + k));
if (x / sum < KF_GAMMA_EPS) break;
}
return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
}
// regularized upper incomplete gamma function, by continued fraction
static double _kf_log_gammaq(double s, double z) {
int j;
double C, D, f;
f = 1. + z - s;
C = f;
D = 0.;
// Modified Lentz's algorithm for computing continued fraction
// See Numerical Recipes in C, 2nd edition, section 5.2
for (j = 1; j < 100; ++j) {
double a = j * (s - j), b = (j << 1) + 1 + z - s, d;
D = b + a * D;
if (D < KF_TINY) D = KF_TINY;
C = b + a / C;
if (C < KF_TINY) C = KF_TINY;
D = 1. / D;
d = C * D;
f *= d;
if (fabs(d - 1.) < KF_GAMMA_EPS) break;
}
return s * log(z) - z - kf_lgamma(s) - log(f);
}
static double kf_log_gammaq(double s, double z) {
return z <= 1. || z < s ? log(1.0 - _kf_gammap(s, z)) : _kf_log_gammaq(s, z);
}
static double log_chidist(double x, double df) { return kf_log_gammaq(ldexp(df, -1), ldexp(x, -1)); }
/****************************************
* FUNCTIONS TO COMPUTE SAMPLE OVERLAP *
****************************************/
inline static double sqr(double x) { return x * x; }
// given a correlation rho, compute the truncated correlation E(Z_1*Z_2 | |Z_1|<1, |Z_2|<1)
// it uses the Taylor expansion for the integral of the truncated binormal function
// E(X,Y | |X|<1, |Y|<1) with p(X,Y) = phi(0, 0, 1, 1, rho)
// to compute the coefficients in MATALB it is enough to run the following code
// format long
// syms x y r;
// n = 10;
// z = exp(-(x^2 - 2*x*y*r + y^2) / (2 * (1 - r^2)));
// f = int(int(taylor(taylor(x*y*z,x,'Order',2*n+1),y,'Order',2*n+1),x,-1,1),y,0,1);
// g = int(int(taylor(taylor(z,x,'Order',2*n+1),y,'Order',2*n+1),x,-1,1),y,0,1);
// h = taylor(f/g,'Order',2*n+1);
// double(flip(coeffs(h)))
// compared to Daniel Taliun's implementation in METAL, this only works for the default ZCUTOFF = 1
static const double coeffs[] = {-0.001022581561869, -0.000154965510526, 0.001823819860201, 0.005329762062430,
0.010828170105212, 0.018814910112783, 0.029788243721651, 0.044210103114571,
0.062456053780874, 0.084753820798725};
static double rho2trunc_rho(double rho) {
int i;
double rho2 = sqr(rho);
double trunc_rho = coeffs[0];
for (i = 1; i < sizeof(coeffs) / sizeof(double); i++) {
trunc_rho *= rho2;
trunc_rho += coeffs[i];
}
return trunc_rho * rho;
}
static double f(double rho, void *trunc_rho) {
if (rho < 0.0 || rho > 1.0) return INFINITY;
return fabs(rho2trunc_rho(rho) - *((double *)trunc_rho));
}
// given the truncated correlation E(Z_1*Z_2 | |Z_1|<1, |Z_2|<1) compute the correlation rho
// it uses the idea of truncated Z-scores to estimate the correlation, as explained in Sengupta, S. 2018
static double trunc_rho2rho(double trunc_rho) {
if (trunc_rho < 0.0) return 0.0;
double rho;
kmin_brent(f, 0.1, 0.2, &trunc_rho, KMIN_EPS, &rho);
return rho;
}
// in Sengupta, S. Improved Analysis of Large Genetic Association Studies Using Summary Statistics.
// The University of Michigan, 2018 http://hdl.handle.net/2027.42/143992 the mathematics is wrong
// (see also http://genome.sph.umich.edu/wiki/METAL_Documentation#Sample_Overlap_Correction
// and http://genome.sph.umich.edu/w/images/7/7b/METAL_sample_overlap_method_2017-11-15.pdf)
// R_{ij} is expected to be the the fraction of samples shared between study i and j
// Sample size based meta-analysis can be computed with the following formulas:
// w_i = \sqrt(N_i)
// N = \sum_{i,j} w_i (R^{-1})_{ij} w_j
// Z = \sum_{i,j} Z_i (R^{-1})_{ij} w_j / \sqrt{N}
// P = 2 \Phi(-|Z|)
// For a pair of study this gives (contrary to what developed by Sebanti Sengupta and implemented by Daniel Taliun)
// N = (n_1 + n_2 - 2 \sqrt{n_1 n_2} r_{12}) / (1 - r_{12}^2) and not n_1 + n_2 - \sqrt{n_1 n_2} r_{12}
// Z = (Z_1 (w_1 - w_2 r_{12}) + Z_2 (w_2 - w_1 r_{12})) / ((1 - r_{12}^2) \sqrt{N})
// and not (w_1 Z_1 + w_2 Z_2) / \sqrt{w_1^2 + w_2^2 + 2 w_1 w_2 r_{12}}
// Inverse variance based meta-analysis can be computed with the following formulas:
// w_i = 1 / se_i (and not w_i = 1 / se_i^2 as in METAL without sample overlap correction)
// N = \sum_{i,j} w_i (R^{-1})_{ij} w_j
// se = \sqrt{1/N}
// \beta = \sum_{i,j} \beta_i w_i (R^{-1})_{ij} w_j / N
// Z = \beta / se
// P = 2 \Phi(-|Z|)
// these formulas can be expanded for a pair of study with the following MATLAB code:
// syms z1 z2 w1 w2 r12;
// R = [1 r12; r12 1];
// N = simplify([w1 w2] * inv(R) * [w1; w2]);
// W = simplify([w1 w2] * inv(R) * diag([w1; w2]));
// simplify(sum(W) / N) % this needs to be 1
// Z = simplify([w1 w2] * inv(R) * [z1; z2] / sqrt(N));
// Function to compute the inverse of a matrix
static double *invert_matrix(double *A, int n) {
// Initialize A_inv to the identity matrix
double *A_inv = (double *)calloc(n * n, sizeof(double));
for (int i = 0; i < n; i++) A_inv[i * n + i] = 1.0;
for (int i = 0; i < n; i++) {
// Find the pivot element
int max = i;
for (int k = i + 1; k < n; k++) {
if (abs(A[k * n + i]) > abs(A[max * n + i])) {
max = k;
}
}
// Swap rows in A and I
for (int k = 0; k < n; k++) {
double temp = A[i * n + k];
A[i * n + k] = A[max * n + k];
A[max * n + k] = temp;
temp = A_inv[i * n + k];
A_inv[i * n + k] = A_inv[max * n + k];
A_inv[max * n + k] = temp;
}
// Eliminate elements below the pivot
for (int k = i + 1; k < n; k++) {
double factor = A[k * n + i] / A[i * n + i];
for (int j = 0; j < n; j++) {
A[k * n + j] -= factor * A[i * n + j];
A_inv[k * n + j] -= factor * A_inv[i * n + j];
}
}
}
// Back substitution
for (int i = n - 1; i >= 0; i--) {
double factor = A[i * n + i];
for (int j = 0; j < n; j++) {
A[i * n + j] /= factor;
A_inv[i * n + j] /= factor;
}
for (int k = 0; k < i; k++) {
factor = A[k * n + i];
for (int j = 0; j < n; j++) {
A[k * n + j] -= factor * A[i * n + j];
A_inv[k * n + j] -= factor * A_inv[i * n + j];
}
}
}
return A_inv;
}
/****************************************
* HASH TABLES FOR INVERSE MATRICES *
****************************************/
// this structure should store temporary inverted matrices to be used
typedef struct {
int n; // number of studies
int idx; // index of last inverse correlation matrix
char *hash_str; // hash to be used to retrieve a matrix
int n_counter; // number of different matrix required
int m_counter; // number of different matrix required
int *counter; // when counter reaches zero, inverse matrix should be removed
double *tmp_matrix; // temporary space to store matrix to invert
double **inv_cor_matrices; // matrices should be added and removed as you go
void *hash; // hash table
} inv_cor_hash_t;
static void inv_cor_hash_init(inv_cor_hash_t *this, int n) {
this->n = n;
this->hash_str = (char *)malloc((n + 1) * sizeof(char));
this->hash_str[n] = '\0';
this->n_counter = 0;
this->m_counter = 0;
this->counter = NULL;
this->tmp_matrix = (double *)malloc(n * n * sizeof(double));
this->inv_cor_matrices = NULL;
this->hash = khash_str2int_init();
}
static void inv_cor_hash_alloc(inv_cor_hash_t *this) {
this->inv_cor_matrices = (double **)calloc(this->n_counter, sizeof(double *));
}
static void inv_cor_hash_add(inv_cor_hash_t *this, const double *zs) {
int k;
for (k = 0; k < this->n; k++) this->hash_str[k] = isnan(zs[k]) ? '0' : '1';
if (khash_str2int_get(this->hash, this->hash_str, &this->idx) < 0) {
this->idx = khash_str2int_inc(this->hash, strdup(this->hash_str));
if (this->idx >= this->n_counter) {
this->n_counter = this->idx + 1;
hts_expand0(int, this->n_counter, this->m_counter, this->counter);
}
}
this->counter[this->idx]++;
}
// this function will retrieve the correct inverse correlation matrix for a given set of studies
// if the inverse correlation matrix has already been previously computed, it will be reload from memory
// if the inverse correlation matrix has never been previosly computed, it will be computed from the input matrix
static const double *inv_cor_hash_get_matrix(inv_cor_hash_t *this, const double *zs, const double *A) {
int k, m, n = 0;
for (k = 0; k < this->n; k++)
if (isnan(zs[k])) {
this->hash_str[k] = '0';
} else {
this->hash_str[k] = '1';
n++;
}
int ret = khash_str2int_get(this->hash, this->hash_str, &this->idx);
if (ret < 0) error("Required inverse correlation matrix could not be retrieved\n");
this->counter[this->idx]--;
if (this->inv_cor_matrices[this->idx]) return this->inv_cor_matrices[this->idx];
// populate the correlation matrix to invert
double *ptr = this->tmp_matrix;
for (k = 0; k < this->n; k++) {
if (this->hash_str[k] == '0') {
A += this->n;
continue;
}
for (m = 0; m < this->n; m++) {
if (this->hash_str[m] == '0') {
A++;
continue;
}
*ptr++ = *A++;
}
}
this->inv_cor_matrices[this->idx] = invert_matrix(this->tmp_matrix, n);
return this->inv_cor_matrices[this->idx];
}
static void inv_cor_hash_clear(inv_cor_hash_t *this) {
if (this->counter[this->idx] == 0) free(this->inv_cor_matrices[this->idx]);
}
static void inv_cor_hash_destroy(inv_cor_hash_t *this) {
free(this->hash_str);
free(this->counter);
free(this->tmp_matrix);
// for (this->idx = 0; this->idx < this->n_counter; this->idx++) free(this->inv_cor_matrices[this->idx]);
free(this->inv_cor_matrices);
khash_str2int_destroy_free(this->hash);
}
/****************************************
* PLUGIN *
****************************************/
const char *about(void) { return "Run meta-analysis from GWAS-VCF summary statistics.\n"; }
static const char *usage_text(void) {
return "\n"
"About: Run meta-analysis from GWAS-VCF summary statistics. "
"(version " METAL_VERSION
" http://github.com/freeseek/score)\n"
"[ Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide\n"
"association scans. Bioinformatics 26, 2190–2191 (2010) http://doi.org/10.1093/bioinformatics/btq340 ]\n"
"[ Sengupta, S. Improved Analysis of Large Genetic Association Studies Using Summary Statistics.\n"
"The University of Michigan, 2018 http://hdl.handle.net/2027.42/143992 ]\n"
"[ Lin, D. & Sullivan, P. F. Meta-Analysis of Genome-wide Association Studies with Overlapping Subjects.\n"
"The American Journal of Human Genetics 85, 862–872 (2009) http://doi.org/10.1016/j.ajhg.2009.11.001 ]\n"
"\n"
"Usage: bcftools +metal [options] <score1.gwas.vcf.gz> "
"<score2.gwas.vcf.gz> [<score3.gwas.vcf.gz> ...]\n"
"Plugin options:\n"
" --summaries <file> list of summary statistics VCFs from file\n"
" -e, --exclude EXPR Exclude sites for which the expression is true (see man page for "
"details)\n"
" -i, --include EXPR Select sites for which the expression is true (see man page for "
"details)\n"
" --szw perform meta-analysis based on sample-size weighted scheme\n"
" rather than inverse-variance weighted scheme\n"
" --het perform heterogenity analysis\n"
" --esd output effect size direction across studies\n"
" --overlap perform sample overlap correction\n"
" --print-corr print correlation matrix to stderr\n"
" --no-version do not append version and command line to the header\n"
" -o, --output <file> write output to a file [no output]\n"
" -O, --output-type u|b|v|z[0-9] u/b: un/compressed BCF, v/z: un/compressed VCF, 0-9: compression level "
"[v]\n"
" -r, --regions <region> restrict to comma-separated list of regions\n"
" -R, --regions-file <file> restrict to regions listed in a file\n"
" --regions-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps "
"(2) [1]\n"
" -t, --targets [^]<region> restrict to comma-separated list of regions. Exclude regions with \"^\" "
"prefix\n"
" -T, --targets-file [^]<file> restrict to regions listed in a file. Exclude regions with \"^\" "
"prefix\n"
" --targets-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps "
"(2) [0]\n"
" --threads <int> use multithreading with INT worker threads [0]\n"
" -W, --write-index[=FMT] Automatically index the output files [off]\n"
"\n"
"Examples:\n"
" bcftools +metal -Ob -o ukb_mvp.gwas.bcf -i ukb.gwas.bcf mvp.gwas.bcf\n"
" bcftools +metal -Ob -o ukb_mvp.gwas.bcf -i 'NS>1000 & AF>0.01 & AF<0.99' ukb.gwas.bcf mvp.gwas.bcf\n"
" bcftools +metal -Ob -o ukb_mvp.gwas.bcf -i 'ID=\"rs1234\" || ID=\"rs123456\" || ID=\"rs123\"' "
"ukb.gwas.bcf mvp.gwas.bcf\n"
"\n";
}
static inline int filter_test_with_logic(filter_t *filter, bcf1_t *line, uint8_t **smpl_pass, int filter_logic) {
if (!filter) return 1;
int i, pass = filter_test(filter, line, (const uint8_t **)smpl_pass);
if (filter_logic & FLT_EXCLUDE) {
if (pass) {
pass = 0;
if (!(*smpl_pass)) return pass;
for (i = 0; i < line->n_sample; i++)
if ((*smpl_pass)[i])
(*smpl_pass)[i] = 0;
else {
(*smpl_pass)[i] = 1;
pass = 1;
}
} else {
pass = 1;
if ((*smpl_pass))
for (i = 0; i < line->n_sample; i++) (*smpl_pass)[i] = 1;
}
}
return pass;
}
int run(int argc, char **argv) {
int iter, i, j, k, l, m, rid, idx;
int filter_logic = 0;
int szw = 0;
int het = 0;
int esd = 0;
int overlap = 0;
int print_corr = 0;
int record_cmd_line = 1;
int write_index = 0;
int output_type = FT_VCF;
int clevel = -1;
int regions_is_file = 0;
int regions_overlap = 1;
int targets_is_file = 0;
int targets_overlap = 0;
int n_threads = 0;
char *tmp = NULL;
const char *pathname = NULL;
const char *output_fname = "-";
char *index_fname;
const char *regions_list = NULL;
const char *targets_list = NULL;
const char *filter_str = NULL;
int *passes = NULL;
uint8_t **smpl_passes = NULL;
filter_t **filters = NULL;
bcf_srs_t *sr = bcf_sr_init();
bcf_sr_set_opt(sr, BCF_SR_REQUIRE_IDX);
bcf_sr_set_opt(sr, BCF_SR_PAIR_LOGIC, BCF_SR_PAIR_EXACT);
htsFile *out_fh = NULL;
static struct option loptions[] = {{"summaries", required_argument, NULL, 1},
{"exclude", required_argument, NULL, 'e'},
{"include", required_argument, NULL, 'i'},
{"szw", no_argument, NULL, 2},
{"het", no_argument, NULL, 3},
{"esd", no_argument, NULL, 4},
{"overlap", no_argument, NULL, 5},
{"print-corr", no_argument, NULL, 6},
{"no-version", no_argument, NULL, 8},
{"output", required_argument, NULL, 'o'},
{"output-type", required_argument, NULL, 'O'},
{"regions", required_argument, NULL, 'r'},
{"regions-file", required_argument, NULL, 'R'},
{"regions-overlap", required_argument, NULL, 7},
{"targets", required_argument, NULL, 't'},
{"targets-file", required_argument, NULL, 'T'},
{"targets-overlap", required_argument, NULL, 10},
{"threads", required_argument, NULL, 9},
{"write-index", optional_argument, NULL, 'W'},
{NULL, 0, NULL, 0}};
int c;
while ((c = getopt_long(argc, argv, "h?e:i:o:O:r:R:t:T:W::", loptions, NULL)) >= 0) {
switch (c) {
case 1:
pathname = optarg;
break;
case 'e':
if (filter_str) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
filter_str = optarg;
filter_logic |= FLT_EXCLUDE;
break;
case 'i':
if (filter_str) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
filter_str = optarg;
filter_logic |= FLT_INCLUDE;
break;
case 2:
szw = 1;
break;
case 3:
het = 1;
break;
case 4:
esd = 1;
break;
case 5:
overlap = 1;
break;
case 6:
print_corr = 1;
break;
case 8:
record_cmd_line = 0;
break;
case 'o':
output_fname = optarg;
break;
case 'O':
switch (optarg[0]) {
case 'b':
output_type = FT_BCF_GZ;
break;
case 'u':
output_type = FT_BCF;
break;
case 'z':
output_type = FT_VCF_GZ;
break;
case 'v':
output_type = FT_VCF;
break;
default: {
clevel = strtol(optarg, &tmp, 10);
if (*tmp || clevel < 0 || clevel > 9) error("The output type \"%s\" not recognised\n", optarg);
}
}
if (optarg[1]) {
clevel = strtol(optarg + 1, &tmp, 10);
if (*tmp || clevel < 0 || clevel > 9)
error("Could not parse argument: --compression-level %s\n", optarg + 1);
}
break;
case 'r':
regions_list = optarg;
break;
case 'R':
regions_list = optarg;
regions_is_file = 1;
break;
case 7:
if (!strcasecmp(optarg, "0"))
regions_overlap = 0;
else if (!strcasecmp(optarg, "1"))
regions_overlap = 1;
else if (!strcasecmp(optarg, "2"))
regions_overlap = 2;
else
error("Could not parse: --regions-overlap %s\n", optarg);
break;
case 't':
targets_list = optarg;
break;
case 'T':
targets_list = optarg;
targets_is_file = 1;
break;
case 10:
if (!strcasecmp(optarg, "0"))
targets_overlap = 0;
else if (!strcasecmp(optarg, "1"))
targets_overlap = 1;
else if (!strcasecmp(optarg, "2"))
targets_overlap = 2;
else
error("Could not parse: --targets-overlap %s\n", optarg);
break;
case 9:
n_threads = (int)strtol(optarg, &tmp, 0);
if (*tmp) error("Could not parse: --threads %s\n", optarg);
break;
case 'W':
if (!(write_index = write_index_parse(optarg))) error("Unsupported index format '%s'\n", optarg);
break;
case 'h':
case '?':
default:
error("%s", usage_text());
break;
}
}
if ((pathname && optind != argc) || (!pathname && optind + 2 > argc)) error("%s", usage_text());
if (!overlap && print_corr) error("Option --print-corr requires option --overlap.\n");
if (filter_logic == (FLT_EXCLUDE | FLT_INCLUDE)) error("Only one of --include or --exclude can be given.\n");
if (regions_list) {
bcf_sr_set_opt(sr, BCF_SR_REGIONS_OVERLAP, regions_overlap);
if (bcf_sr_set_regions(sr, regions_list, regions_is_file) < 0)
error("Failed to read the regions: %s\n", regions_list);
}
if (targets_list) {
bcf_sr_set_opt(sr, BCF_SR_TARGETS_OVERLAP, targets_overlap);
if (bcf_sr_set_targets(sr, targets_list, targets_is_file, 0) < 0)
error("Failed to read the targets: %s\n", targets_list);
sr->collapse |= COLLAPSE_BOTH;
}
if (n_threads && bcf_sr_set_threads(sr, n_threads) < 0) error("Failed to create threads\n");
int n_files;
char **filenames = NULL;
if (pathname) {
filenames = hts_readlines(pathname, &n_files);
if (!filenames) error("Failed to read from file %s\n", pathname);
} else {
n_files = argc - optind;
filenames = argv + optind;
}
if (n_files < 2) error("At least 2 summary statistics files required as input while only %d provided\n", n_files);
for (j = 0; j < n_files; j++)
if (!bcf_sr_add_reader(sr, filenames[j]))
error("Error opening %s: %s\n", filenames[j], bcf_sr_strerror(sr->errnum));
bcf_hdr_t *hdr = NULL;
if (filter_str) {
passes = (int *)malloc(sizeof(int) * n_files);
smpl_passes = (uint8_t **)malloc(sizeof(uint8_t *) * n_files);
filters = (filter_t **)malloc(sizeof(filter_t *) * n_files);
for (j = 0; j < n_files; j++) {
hdr = bcf_sr_get_header(sr, j);
filters[j] = filter_init(hdr, filter_str);
}
}
hdr = bcf_sr_get_header(sr, 0);
bcf_hdr_t *out_hdr = bcf_hdr_init("w");
int *id = (int *)malloc(sizeof(int) * SIZE * n_files);
int output[SIZE] = {0};
for (j = 0; j < n_files; j++) {
hdr = bcf_sr_get_header(sr, j);
// copy filters information in new header
for (i = 0; i < hdr->nhrec; i++) {
bcf_hrec_t *hrec = hdr->hrec[i];
if (hrec->type == BCF_HL_FLT) {
// copied from htslib/vcf.c
int k = bcf_hrec_find_key(hrec, "ID");
assert(k >= 0); // this should always be true for valid VCFs
bcf_hrec_t *rec = bcf_hdr_get_hrec(out_hdr, hrec->type, "ID", hrec->vals[k], NULL);
if (!rec) {
int res = bcf_hdr_add_hrec(out_hdr, bcf_hrec_dup(hrec));
assert(res == 1);
}
}
}
// copy contigs information in new header
for (rid = 0; rid < hdr->n[BCF_DT_CTG]; rid++) {
const char *seq = hdr->id[BCF_DT_CTG][rid].key;
if (bcf_hdr_name2id(out_hdr, seq) != -1) continue;
uint64_t len = hdr->id[BCF_DT_CTG][rid].val->info[0];
bcf_hdr_printf(out_hdr, len ? "##contig=<ID=%s,length=%" PRIu64 ">" : "##contig=<ID=%s>", seq, len);
}
// copy samples information in new header
for (l = 0; l < bcf_hdr_nsamples(hdr); l++)
if (bcf_hdr_id2int(out_hdr, BCF_DT_SAMPLE, hdr->samples[l]) < 0)
bcf_hdr_add_sample(out_hdr, hdr->samples[l]);
for (idx = 0; idx < SIZE; idx++) {
id[j * SIZE + idx] = bcf_hdr_id2int(hdr, BCF_DT_ID, id_str[idx]);
if (!bcf_hdr_idinfo_exists(hdr, BCF_HL_FMT, id[j * SIZE + idx])) id[j * SIZE + idx] = -1;
}
if (szw) { // sample-size weighted scheme
if (id[j * SIZE + NS] < 0 && id[j * SIZE + NE] < 0)
error("NS or NE FORMAT fields required to compute study weight missing from file %s\n", filenames[j]);
if (id[j * SIZE + EZ] < 0 && (id[j * SIZE + ES] < 0 || id[j * SIZE + LP] < 0))
error("EZ or ES and LP FORMAT fields required to compute study Z-score missing from file %s\n",
filenames[j]);
} else { // inverse-variance weighted scheme
if (id[j * SIZE + SE] < 0)
error("SE FORMAT field required to compute study weight missing from file %s\n", filenames[j]);
if (id[j * SIZE + ES] < 0)
error("ES FORMAT field required to compute study effect size missing from file %s\n", filenames[j]);
}
}
if (bcf_hdr_sync(out_hdr) < 0) error_errno("Failed to update header");
if (bcf_hdr_nsamples(out_hdr) == 0) error("No summary statistics in the input files");
// create sample map
// i is an index 1..n_smpl for the samples in the output VCF
// j is an index 1..n_files for the input VCFs
// k is an index 1..i2n[i] for which input VCFs contribute to a given sample in the output VCF
// l is an index for the samples in the input VCFs
int n_smpl = bcf_hdr_nsamples(out_hdr);
int *i2n = (int *)calloc(sizeof(int), n_smpl);
int **i_k2j = (int **)malloc(sizeof(int *) * n_smpl);
int **i_k2l = (int **)malloc(sizeof(int *) * n_smpl);
int max_n = 0;
for (i = 0; i < n_smpl; i++) {
for (j = 0; j < n_files; j++) {
hdr = bcf_sr_get_header(sr, j);
if (bcf_hdr_id2int(hdr, BCF_DT_SAMPLE, out_hdr->samples[i]) != -1) i2n[i]++;
}
if (max_n < i2n[i]) max_n = i2n[i];
i_k2j[i] = (int *)malloc(sizeof(int) * i2n[i]);
i_k2l[i] = (int *)malloc(sizeof(int) * i2n[i]);
int output_ns = 1;
int output_nc = 1;
int output_af = 1;
int output_ac = 1;
for (j = 0, k = 0; j < n_files; j++) {
hdr = bcf_sr_get_header(sr, j);
int l = bcf_hdr_id2int(hdr, BCF_DT_SAMPLE, out_hdr->samples[i]);
if (l < 0) continue;
i_k2j[i][k] = j;
i_k2l[i][k] = l;
// if one input study misses the FORMAT field there will be no output for that meta-analysis
if (id[j * SIZE + NS] < 0) output_ns = 0;
if (id[j * SIZE + NC] < 0) output_nc = 0;
if (id[j * SIZE + AF] < 0) output_af = 0;
if (id[j * SIZE + AC] < 0) output_ac = 0;
k++;
}
// if one output meta-analysis can compute a FORMAT field there will be output
if (output_ns) output[NS] = 1;
if (output_nc) output[NC] = 1;
if (output_af) output[AF] = 1;
if (output_ac) output[AC] = 1;
}
// add FORMAT header fields
if (szw) { // sample-size weighted scheme
output[EZ] = 1;
} else { // inverse-variance weighted scheme
output[ES] = 1;
output[SE] = 1;
if (output[NS]) output[NE] = 1;
}
output[LP] = 1;
if (het) { // Cochran's Q test
output[CQ] = 1;
output[I2] = 1;
}
if (overlap) {
output[NS] = 0;
output[NC] = 0;
output[AC] = 0;
output[NE] = 1;
}
for (idx = 0; idx < SIZE; idx++)
if (output[idx]
&& bcf_hdr_printf(out_hdr, "##FORMAT=<ID=%s,Number=A,Type=Float,Description=\"%s\">", id_str[idx],
desc_str[idx])
< 0)
error_errno("Failed to add \"%s\" FORMAT header", id_str[idx]);
if (esd
&& bcf_hdr_printf(out_hdr, "##FORMAT=<ID=%s,Number=A,Type=String,Description=\"%s\">", id_str[SIZE],
desc_str[SIZE])
< 0)
error_errno("Failed to add \"%s\" FORMAT header", id_str[SIZE]);
if (bcf_hdr_sync(out_hdr) < 0) error_errno("Failed to update header");
// allocate memory for a variable that will record first the Z-scores for each study and
// then the weight for each study and a variable for the correlation matrices
double **overlap_ws = NULL, **overlap_zs = NULL, **overlap_afs = NULL, **overlap_sqrt_nes = NULL,
**cor_matrices = NULL;
inv_cor_hash_t *inv_cor_hashes = NULL;
if (overlap) {
overlap_ws = (double **)malloc(n_smpl * sizeof(double *));
overlap_zs = (double **)malloc(n_smpl * sizeof(double *));
overlap_afs = (double **)malloc(n_smpl * sizeof(double *));
overlap_sqrt_nes = (double **)malloc(n_smpl * sizeof(double *));
cor_matrices = (double **)malloc(n_smpl * sizeof(double *));
inv_cor_hashes = (inv_cor_hash_t *)malloc(n_smpl * sizeof(inv_cor_hash_t));
for (i = 0; i < n_smpl; i++) {
overlap_ws[i] = (double *)calloc(i2n[i], sizeof(double));
overlap_zs[i] = (double *)calloc(i2n[i], sizeof(double));
overlap_afs[i] = (double *)calloc(i2n[i], sizeof(double));
overlap_sqrt_nes[i] = (double *)calloc(i2n[i], sizeof(double));
cor_matrices[i] = (double *)calloc(i2n[i] * i2n[i], sizeof(double));
inv_cor_hash_init(&inv_cor_hashes[i], i2n[i]);
}
}
char wmode[8];
set_wmode(wmode, output_type, output_fname, clevel);
out_fh = hts_open(output_fname, wmode);
if (out_fh == NULL) error("Error: cannot write to \"%s\": %s\n", output_fname, strerror(errno));
if (n_threads) hts_set_opt(out_fh, HTS_OPT_THREAD_POOL, sr->p);
if (record_cmd_line) bcf_hdr_append_version(out_hdr, argc, argv, "bcftools_metal");
if (bcf_hdr_write(out_fh, out_hdr) < 0) error("Unable to write to output VCF file\n");
if (init_index2(out_fh, hdr, output_fname, &index_fname, write_index) < 0)
error("Error: failed to initialise index for %s\n", output_fname);
// process GWAS-VCF rows
float *val_arr = (float *)malloc(sizeof(float) * SIZE * n_smpl);
char *esd_arr = (char *)malloc(sizeof(float) * n_files * n_smpl);
for (i = 0; i < n_files * n_smpl; i++) esd_arr[i] = bcf_str_vector_end;
bcf1_t *out_line = bcf_init();
bcf_float_set_missing(out_line->qual);
for (iter = 0; iter < 2; iter++) {
while (bcf_sr_next_line(sr)) {
if (filters) {
int pass = 0;
for (j = 0; j < n_files; j++) {
if (!bcf_sr_has_line(sr, j)) continue;
bcf1_t *line = bcf_sr_get_line(sr, j);
hdr = bcf_sr_get_header(sr, j);
passes[j] = filter_test_with_logic(filters[j], line, &smpl_passes[j], filter_logic);
if (passes[j]) pass = 1;
}
if (!pass) continue; // skip the line for all input VCFs
}
for (i = 0; i < SIZE * n_smpl; i++) bcf_float_set_missing(val_arr[i]);
for (i = 0; i < n_smpl; i++) {
double xnum = 0.0;
double xden = 0.0;
double ns_sum = 0.0;
double nc_sum = 0.0;
double af_sum = 0.0;
double ac_sum = 0.0;
double ne_sum = 0.0;
double cq_sum = 0.0;
int fill_line = 0;
int df = -1;
bcf_update_id(NULL, out_line, NULL);
bcf_update_filter(out_hdr, out_line, NULL, 0);
for (k = 0; k < i2n[i]; k++) {
esd_arr[n_files * i + k] = '?';
if (overlap) overlap_zs[i][k] = NAN;
int j = i_k2j[i][k];
if (!bcf_sr_has_line(sr, j)) continue;
bcf1_t *line = bcf_sr_get_line(sr, j);
hdr = bcf_sr_get_header(sr, j);