This repository has been archived by the owner on Jan 8, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
241 lines (193 loc) · 6.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
"""
Training of models
"""
###########
# Imports #
###########
import time
import torch
#############
# Functions #
#############
def train_epoch(model, loader, criterion, optimizer):
'''Trains a model for one epoch.'''
model.train()
device = next(model.parameters()).device
losses = []
for inputs, targets in loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
losses.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
return losses
########
# Main #
########
if __name__ == '__main__':
# Imports
import argparse
import csv
import numpy as np
import os
import random
import sys
import via as VIA
from torch.utils.data import DataLoader
from torch.optim import Adam, SGD
from dataset import VIADataset, ColorJitter, RandomFilter, RandomTranspose, Scale, ToTensor
from models import UNet, SegNet, MultiTaskUNet, MultiTaskSegNet
from criterions import DiceLoss, MultiTaskLoss, TP, TN, FP, FN
# Arguments
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('-d', '--destination', default='../products/models/', help='destination of the network file(s)')
parser.add_argument('-e', '--epochs', type=int, default=100, help='number of epochs')
parser.add_argument('-f', '--fold', type=int, default=0, help='the fold')
parser.add_argument('-i', '--input', default='../products/json/california.json', help='input VIA file')
parser.add_argument('-k', type=int, default=5, help='the number of folds')
parser.add_argument('-m', '--model', default='unet', choices=['unet', 'segnet'], help='network schema')
parser.add_argument('-multitask', default=False, action='store_true', help='multi-task network')
parser.add_argument('-n', '--name', default=None, help='name of the network')
parser.add_argument('-o', '--output', default=None, help='standard output file')
parser.add_argument('-p', '--path', default='../resources/california/', help='path to resources')
parser.add_argument('-r', '--resume', type=int, default=1, help='epoch at which to resume')
parser.add_argument('-s', '--stat', default='../products/csv/statistics.csv', help='convergence statistics file')
parser.add_argument('-scale', type=int, default=1, help='scale of the images')
parser.add_argument('-batch', type=int, default=5, help='batch size')
parser.add_argument('-optim', default='adam', choices=['adam', 'sgd'], help='optimizer')
parser.add_argument('-lrate', type=float, default=1e-3, help='learning rate')
parser.add_argument('-wdecay', type=float, default=1e-4, help='weight decay')
parser.add_argument('-momentum', type=float, default=0.9, help='momentum of SGD')
parser.add_argument('-special', default=False, action='store_true', help='special mode')
args = parser.parse_args()
# Output file
if args.output is not None:
if os.path.dirname(args.output):
os.makedirs(os.path.dirname(args.output), exist_ok=True)
sys.stdout = open(args.output, 'a')
print('-' * 10)
# Datasets
via = VIA.load(args.input)
keys = sorted(list(via.keys()))
random.seed(0) # reproductability
random.shuffle(keys)
if (args.k > 0):
train_via = {key: via[key] for i, key in enumerate(keys) if (i % args.k) != args.fold}
else:
train_via = via
if args.special:
trainset = VIADataset(train_via, args.path, shuffle=True, size=None)
trainset = RandomTranspose(trainset)
else:
trainset = VIADataset(train_via, args.path, shuffle=True, alt=1)
trainset = Scale(trainset, args.scale) if args.scale > 1 else trainset
trainset = RandomTranspose(RandomFilter(ColorJitter(trainset)))
trainset = ToTensor(trainset)
print('Training size = {}'.format(len(trainset)))
# Dataloaders
trainloader = DataLoader(trainset, batch_size=args.batch, pin_memory=True)
# Model
if args.model == 'unet':
if args.multitask:
model = MultiTaskUNet(3, 1, R=5)
else:
model = UNet(3, 1)
elif args.model == 'segnet':
if args.multitask:
model = MultiTaskSegNet(3, 1, R=5)
else:
model = SegNet(3, 1)
else:
raise ValueError('unknown model {}'.format(args.model))
if torch.cuda.is_available():
print('CUDA available -> Transfering to CUDA')
device = torch.device('cuda')
else:
device = torch.device('cpu')
print('CUDA unavailable')
model = model.to(device)
os.makedirs(args.destination, exist_ok=True)
basename = os.path.join(
args.destination,
args.model if args.name is None else args.name
)
if args.resume > 1:
modelname = '{}_{:03d}.pth'.format(basename, args.resume - 1)
if os.path.exists(modelname):
print('Resuming from {}'.format(modelname))
model.load_state_dict(torch.load(modelname, map_location=device))
else:
args.resume = 1
else:
args.resume = 1
# Convergence statistics
if os.path.dirname(args.stat):
os.makedirs(os.path.dirname(args.stat), exist_ok=True)
if not os.path.exists(args.stat):
with open(args.stat, 'w', newline='') as f:
csv.writer(f).writerow([
'model',
'epoch',
'train_loss_mean',
'train_loss_std',
'train_loss_first',
'train_loss_second',
'train_loss_third'
])
# Criterion
if args.multitask:
train_criterion = MultiTaskLoss(smooth=1., R=5)
else:
train_criterion = DiceLoss(smooth=1.)
# Optimizer
if args.optim == 'adam':
optimizer = Adam(
model.parameters(),
lr=args.lrate,
weight_decay=args.wdecay
)
elif args.optim == 'sgd':
optimizer = SGD(
model.parameters(),
lr=args.lrate,
weight_decay=args.wdecay,
momentum=args.momentum
)
else:
raise ValueError('unknown optimizer {}'.format(args.optim))
# Training
epochs = range(args.resume, args.resume + args.epochs)
for epoch in epochs:
if args.output is not None:
sys.stdout.close()
sys.stdout = open(args.output, 'a')
print('-' * 10)
print('Epoch {}'.format(epoch))
start = time.time()
## Training set
train_losses = train_epoch(model, trainloader, train_criterion, optimizer)
elapsed = time.time() - start
print('{:.0f}m{:.0f}s elapsed'.format(elapsed // 60, elapsed % 60))
## Statistics
train_losses = np.array(train_losses)
train_mean = train_losses.mean()
print('Training loss = {}'.format(train_mean))
with open(args.stat, 'a', newline='') as f:
csv.writer(f).writerow([
args.name,
epoch,
np.mean(train_losses),
np.std(train_losses),
np.quantile(train_losses, 0.25),
np.quantile(train_losses, 0.5),
np.quantile(train_losses, 0.75)
])
## Saving last
if epoch == epochs[-1]:
modelname = '{}_{:03d}.pth'.format(basename, epoch)
print('Saving {}'.format(modelname))
torch.save(model.state_dict(), modelname)