-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.txt
113 lines (47 loc) · 2.83 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Remaining-useful-life-prediction-by-TaFCN-in-CMAPSS-dataset
Trend attention fully convolutional network for remaining useful life estimation in the turbofan engine of CMAPSS dataset. Signal selection, Attention mechanism, and Interpretability of deep learning are explored.
# Easy to run successfully
To make code easy to run successfully, we debug the files carefully. Generally speaking, if environments are satisfied, you can directly run all the xxx.py files inside after decompressing the compressed package without changing any code.
(1) Unzip Remaining-useful-life-prediction-by-LM-and-TaFCN-main.zip, then unzip fd.rar in it
(2) Run any xxx.py directly
# Paper of Code and Citation
(1) To better understand our code, please read our paper.
Paper: Trend attention fully convolutional network for remaining useful life estimation
The website of the paper£ºhttps://www.sciencedirect.com/science/article/pii/S0951832022002356
(2) Please cite this paper and the original source of the dataset when using the code for academic purposes.
GB/T 7714:
Fan L, Chai Y, Chen X. Trend attention fully convolutional network for remaining useful life estimation[J]. Reliability Engineering & System Safety, 2022: 108590.
BibTex:
@article{fan2022trend,
title={Trend attention fully convolutional network for remaining useful life estimation},
author={Fan, Linchuan and Chai, Yi and Chen, Xiaolong},
journal={Reliability Engineering \& System Safety},
pages={108590},
year={2022},
publisher={Elsevier}
}
# Relationship between Code and Paper
(1) Section 2.2. Loss boundary to mapping ability
:code\signal selection
(2) Section 2.3. Trend attention fully convolutional network
:code\main(grid_FD_multi_channel_one_FCN_RUL_TaNet_attention_1out_all_train_for_test).py
(3) Section 4. Interpretability
:code\figure\interpretability_analysis.py
(4) Fig. 6. Attention analysis of TaNet.
:code\figure\interpretability_TaNet_analysis.py
(5) Fig. 7. Accumulated prediction error over RUL.
:code\figure\prediction_error.py
(6) Fig. 5. Wilcoxon signed rank test comparison of eight combinations
:code\figure\heatmap_p.py and code\table\wilcxon.py
# Environment and Acknowledgement:
(1) Environment:
tensorflow-gpu 1.15.0
keras 2.2.4
scipy 1.5.2
pandas 1.0.5
numpy 1.19.1
(2) Acknowledgement:
Thanks for the following references sincerely.
github£ºhttps://github.com/Vardoom/PredictiveMaintenanceNASA/blob/master/preprocess.ipynb
github£ºhttps://github.com/schwxd/LSTM-Keras-CMAPSS
github£ºhttps://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline