-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathalignment.py
327 lines (264 loc) · 10.8 KB
/
alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Functions performing face alignment (ie preprocessing tasks)
Face alignment is done in two parts: mesh align with triangulation and manual alignment
"""
from math import *
from os import listdir
from scipy.spatial import Delaunay
import cv2
import dlib
import matplotlib.pyplot as plt
import numpy as np
from config import *
from landmark import get_landmarks
predictor = dlib.shape_predictor(PREDICTOR_PATH)
cascade = cv2.CascadeClassifier(CASCADE_PATH)
def dist(tupleA, tupleB):
""" Distance between two points in R^2 """
return sqrt((tupleB[0] - tupleA[0]) ** 2 + (tupleB[1] - tupleA[1]) ** 2)
def detect_face(img):
""" Function detecting the biggest face in an image """
rects = cascade.detectMultiScale(img, 1.3, 5)
rects = rects[np.argsort(rects[:, 3])[::-1]]
x, y, w, h = rects[0]
return img[y:y + h, x:x + w]
##############################
# Manual Alignment Functions #
##############################
def useful_points_on_face(img, detect_face):
""" Return the position of the nose, eyes and chin """
lm = get_landmarks(img, detect_face)
nose = lm[30]
left_eye = tuple((np.array(lm[37]) + np.array(lm[38]) + np.array(lm[40]) + np.array(lm[41])) / 4.0)
right_eye = tuple((np.array(lm[43]) + np.array(lm[44]) + np.array(lm[46]) + np.array(lm[47])) / 4.0)
chin = lm[8]
mideye = lm[27]
# mouth
mouth_array = np.zeros(2)
for i in range(48, 68):
mouth_array += np.array(lm[i])
mouth = tuple(mouth_array / 20.0)
return nose, chin, left_eye, right_eye, mideye, mouth
def rotate(img, angle, center):
""" Rotate the image around center of angle """
rot_mat = cv2.getRotationMatrix2D(center, angle, 1.0)
result = cv2.warpAffine(img, rot_mat, (int(img.shape[1] * 1.0), int(img.shape[0] * 1.0)), flags=cv2.INTER_LINEAR)
return result
def translation(img, vec):
""" Translate the image according to the corresponding vector """
tx = vec[0]
ty = vec[1]
M = np.float32([[1, 0, tx], [0, 1, ty]])
return cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
def align(img, display=False, save=False):
""" Manually align the image """
nose, chin, left_eye, right_eye, mideye, mouth = useful_points_on_face(img, True) # can try with False too
# 1st step
# rotation around left eye
eye_vector = np.array(right_eye) - np.array(left_eye)
theta = atan2(eye_vector[1], eye_vector[0])
img_rot = rotate(img, theta * 180.0 / pi, left_eye)
# resizing
eye_space = dist(left_eye, right_eye)
face_height = dist(chin, mideye)
# eye_mouth=dist(me,mouth)
x_factor = EYES_SPACE / eye_space
# y_factor = EYE_MOUTH / eye_mouth
y_factor = FACE_HEIGHT / face_height
factor = (x_factor + y_factor) / 2.0
img_res = cv2.resize(img_rot, None, fx=x_factor, fy=y_factor, interpolation=cv2.INTER_CUBIC)
if display:
cv2.imshow("First alignment", img_res)
cv2.waitKey()
cv2.destroyAllWindows()
if save:
cv2.imwrite("first_alignment.jpg", img_res)
# 2nd step
img = img_res
# translation
left_eye = (left_eye[0] * x_factor, left_eye[1] * y_factor)
transl_vec = tuple(np.array(LEFT_EYE_POS) - np.array(left_eye))
img_t = translation(img, transl_vec)
# crop
crop_img = img_t[0:HEIGHT, 0:WIDTH]
img = crop_img
if display:
cv2.imshow("Manual Alignment", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
if save:
cv2.imwrite("manual_alignment.jpg", img)
return img
###########################
# IMAGE WARPING FUNCTIONS #
###########################
def preprocess_image_before_triangulation(img):
"""
Perform preprocessing of the image
Return all the points that will be used for the triangulation and the coordinates of the rectangle around the face
"""
# landmark extraction
lm = get_landmarks(img, True) # change if not LFW (True for LFW)
# image size
x_img, y_img, _ = img.shape
# rectangle around face
ymax = lm[8][1]
xmin = lm[0][0]
xmax = lm[16][0]
ymin = min(lm[19][1], lm[24][1])
xr = xmax - xmin
yr = ymax - ymin
epsilon = 0.08
xmin_rect = int(xmin - epsilon * xr)
xmax_rect = int(xmax + epsilon * xr)
ymin_rect = int(ymin - epsilon * yr)
ymax_rect = int(ymax + epsilon * yr)
coord = (xmin_rect, xmax_rect, ymin_rect, ymax_rect)
# new landmarks (on the rectangle sides)
top_points = np.array([[x, ymin_rect] for x in np.linspace(xmin_rect, xmax_rect, 15)])
bottom_points = np.array([[x, ymax_rect] for x in np.linspace(xmin_rect, xmax_rect, 20)])
side_points = np.linspace(int(ymin_rect + yr * 1.1 / 12.0), int(ymax_rect - yr * 1.1 / 12.0), 11)
left_points = np.array([[xmin_rect, y] for y in side_points])
right_points = np.array([[xmax_rect, y] for y in side_points])
# all points for the triangulation
lm_points = np.array([[x, y] for (x, y) in lm])
all_points = np.concatenate((lm_points, top_points, right_points, bottom_points, left_points))
all_points = np.array([
[np.clip(x, 0, x_img - 1), np.clip(y, 0, y_img - 1)]
for (x, y) in all_points
])
return all_points, coord
def delaunay_triangulation(points, plot=False):
""" Extract a Delaunay's triangulation from the points """
tri = Delaunay(points)
if plot:
plt.triplot(points[:, 0], points[:, 1], tri.simplices.copy())
plt.plot(points[:, 0], points[:, 1], 'o')
plt.show()
return tri.simplices
def warp_image(img, triangulation, base_points, coord):
"""
Realize the mesh warping phase
triangulation is the Delaunay triangulation of the base points
base_points are the coordinates of the landmark poitns of the reference image
code inspired from http://www.learnopencv.com/warp-one-triangle-to-another-using-opencv-c-python/
"""
all_points, coordinates = preprocess_image_before_triangulation(img)
img_out = 255 * np.ones(img.shape, dtype=img.dtype)
for t in triangulation:
# triangles to map one another
src_tri = np.array([[all_points[x][0], all_points[x][1]] for x in t]).astype(np.float32)
dest_tri = np.array([[base_points[x][0], base_points[x][1]] for x in t]).astype(np.float32)
# bounding boxes
src_rect = cv2.boundingRect(np.array([src_tri]))
dest_rect = cv2.boundingRect(np.array([dest_tri]))
# crop images
src_crop_tri = np.zeros((3, 2), dtype=np.float32)
dest_crop_tri = np.zeros((3, 2))
for k in range(0, 3):
for dim in range(0, 2):
src_crop_tri[k][dim] = src_tri[k][dim] - src_rect[dim]
dest_crop_tri[k][dim] = dest_tri[k][dim] - dest_rect[dim]
src_crop_img = img[src_rect[1]:src_rect[1] + src_rect[3], src_rect[0]:src_rect[0] + src_rect[2]]
# affine transformation estimation
mat = cv2.getAffineTransform(
np.float32(src_crop_tri),
np.float32(dest_crop_tri)
)
dest_crop_img = cv2.warpAffine(
src_crop_img,
mat,
(dest_rect[2], dest_rect[3]),
None,
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101
)
# Use a mask to keep only the triangle pixels
# Get mask by filling triangle
mask = np.zeros((dest_rect[3], dest_rect[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(dest_crop_tri), (1.0, 1.0, 1.0), 16, 0)
# Apply mask to cropped region
dest_crop_img = dest_crop_img * mask
# Copy triangular region of the rectangular patch to the output image
img_out[dest_rect[1]:dest_rect[1] + dest_rect[3], dest_rect[0]:dest_rect[0] + dest_rect[2]] = \
img_out[dest_rect[1]:dest_rect[1] + dest_rect[3], dest_rect[0]:dest_rect[0] + dest_rect[2]] * (
(1.0, 1.0, 1.0) - mask)
img_out[dest_rect[1]:dest_rect[1] + dest_rect[3], dest_rect[0]:dest_rect[0] + dest_rect[2]] = \
img_out[dest_rect[1]:dest_rect[1] + dest_rect[3], dest_rect[0]:dest_rect[0] + dest_rect[2]] + dest_crop_img
return img_out[coord[2]:coord[3], coord[0]:coord[1]]
def mesh_align(img, imgref):
"""
Maps all the triangles of the img image to the triangles of imgref
"""
bp, coord = preprocess_image_before_triangulation(imgref)
tr = delaunay_triangulation(bp)
img_out = warp_image(img, tr, bp, coord)
return img_out
########################
# TOTAL ALIGN FUNCTION #
########################
def preprocess(img, imgref):
"""
Align the image img with respect to the reference image imgref
Does the two steps of mesh warping and manual alignment
"""
im = mesh_align(img, imgref)
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# im = cv2.resize(im, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)
im = align(im)
return im
########################
# ADDITIONAL FUNCTIONS #
########################
def draw_triangulation(im, tri, bp):
""" Draw a triangulation """
img = im.copy()
for t in tri:
n1 = t[0]
n2 = t[1]
n3 = t[2]
pt1 = (int(bp[n1][0]), int(bp[n1][1]))
pt2 = (int(bp[n2][0]), int(bp[n2][1]))
pt3 = (int(bp[n3][0]), int(bp[n3][1]))
cv2.line(img, pt1, pt2, (0, 0, 255))
cv2.line(img, pt3, pt2, (0, 0, 255))
cv2.line(img, pt1, pt3, (0, 0, 255))
return img
def show_warped_image(im_path, save=False, save_path="warpedImage.jpg"):
""" Show the result of the mesh warping process """
img = cv2.imread(im_path)
img_ref = cv2.imread(IMREF_PATH)
img_warp = mesh_align(img, img_ref)
cv2.imshow("warped image", img_warp)
cv2.waitKey()
cv2.destroyAllWindows()
if save:
cv2.imwrite(save_path, img_warp)
def show_aligned_image(im_path, save=False, save_path="alignedImage.jpg"):
""" Show the result of the alignment process """
img = cv2.imread(im_path)
img_ref = cv2.imread(IMREF_PATH)
img_aligned = preprocess(img, img_ref)
cv2.imshow("aligned image", img_aligned)
cv2.waitKey()
cv2.destroyAllWindows()
if save:
cv2.imwrite(save_path, img_aligned)
def show_triangulation_image(im_path, save=False, save_path="triangulationImage.jpg"):
""" Show the result of the alignment process """
img = cv2.imread(im_path)
img_ref = cv2.imread(IMREF_PATH)
allpoints, co = preprocess_image_before_triangulation(img)
bp, coord = preprocess_image_before_triangulation(img_ref)
tr = delaunay_triangulation(bp)
img_tri = draw_triangulation(img, tr, allpoints)
cv2.imshow("triangulation image", img_tri)
cv2.waitKey()
cv2.destroyAllWindows()
if save:
cv2.imwrite(save_path, img_tri)
if __name__ == '__main__':
im = 'federer_image.jpg'
show_warped_image(im, True, "federer_warped.jpg")
show_aligned_image(im, True, "federer_aligned.jpg")
show_triangulation_image(im, True, "federer_triangulation.jpg")