-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathRedundantConnection684.java
184 lines (159 loc) · 5.4 KB
/
RedundantConnection684.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/**
* In this problem, a tree is an undirected graph that is connected and has no cycles.
*
* The given input is a graph that started as a tree with N nodes (with distinct
* values 1, 2, ..., N), with one additional edge added. The added edge has two
* different vertices chosen from 1 to N, and was not an edge that already existed.
*
* The resulting graph is given as a 2D-array of edges. Each element of edges
* is a pair [u, v] with u < v, that represents an undirected edge connecting
* nodes u and v.
*
* Return an edge that can be removed so that the resulting graph is a tree of
* N nodes. If there are multiple answers, return the answer that occurs last
* in the given 2D-array. The answer edge [u, v] should be in the same format,
* with u < v.
*
* Example 1:
* Input: [[1,2], [1,3], [2,3]]
* Output: [2,3]
* Explanation: The given undirected graph will be like this:
* 1
* / \
* 2 - 3
*
* Example 2:
* Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
* Output: [1,4]
* Explanation: The given undirected graph will be like this:
* 5 - 1 - 2
* | |
* 4 - 3
*
* Note:
* The size of the input 2D-array will be between 3 and 1000.
* Every integer represented in the 2D-array will be between 1 and N, where N
* is the size of the input array.
*
* Update (2017-09-26):
* We have overhauled the problem description + test cases and specified clearly
* the graph is an undirected graph. For the directed graph follow up please
* see Redundant Connection II). We apologize for any inconvenience caused.
*
*/
public class RedundantConnection684 {
public int[] findRedundantConnection(int[][] edges) {
Map<Integer, Set<Integer>> graph = new HashMap<>();
Set<Integer> visited = new HashSet<>();
for (int[] edge: edges) {
visited.clear();
Set<Integer> set0 = graph.getOrDefault(edge[0], new HashSet<Integer>());
Set<Integer> set1 = graph.getOrDefault(edge[1], new HashSet<Integer>());
if (!set0.isEmpty() && !set1.isEmpty() && dfs(graph, edge[0], edge[1], visited)) {
return edge;
}
set0.add(edge[1]);
graph.put(edge[0], set0);
set1.add(edge[0]);
graph.put(edge[1], set1);
}
return null;
}
private boolean dfs(Map<Integer, Set<Integer>> graph, int source, int target, Set<Integer> visited) {
if (!visited.contains(source)) {
visited.add(source);
if (source == target) return true;
for (int nei: graph.get(source)) {
if (dfs(graph, nei, target, visited)) return true;
}
}
return false;
}
/**
* https://leetcode.com/problems/redundant-connection/solution/
*/
Set<Integer> seen = new HashSet();
int MAX_EDGE_VAL = 1000;
public int[] findRedundantConnection2(int[][] edges) {
ArrayList<Integer>[] graph = new ArrayList[MAX_EDGE_VAL + 1];
for (int i = 0; i <= MAX_EDGE_VAL; i++) {
graph[i] = new ArrayList();
}
for (int[] edge: edges) {
seen.clear();
if (!graph[edge[0]].isEmpty() && !graph[edge[1]].isEmpty() &&
dfs(graph, edge[0], edge[1])) {
return edge;
}
graph[edge[0]].add(edge[1]);
graph[edge[1]].add(edge[0]);
}
throw new AssertionError();
}
public boolean dfs(ArrayList<Integer>[] graph, int source, int target) {
if (!seen.contains(source)) {
seen.add(source);
if (source == target) return true;
for (int nei: graph[source]) {
if (dfs(graph, nei, target)) return true;
}
}
return false;
}
/**
* https://leetcode.com/problems/redundant-connection/solution/
*/
public int[] findRedundantConnection3(int[][] edges) {
DSU dsu = new DSU(MAX_EDGE_VAL + 1);
for (int[] edge: edges) {
if (!dsu.union(edge[0], edge[1])) return edge;
}
throw new AssertionError();
}
/**
* https://leetcode.com/problems/redundant-connection/discuss/107984/10-line-Java-solution-Union-Find
*/
public int[] findRedundantConnection4(int[][] edges) {
int[] parent = new int[1001];
for (int i = 0; i < parent.length; i++) parent[i] = i;
for (int[] edge: edges){
int f = edge[0], t = edge[1];
if (find(parent, f) == find(parent, t)) return edge;
else parent[find(parent, f)] = find(parent, t);
}
return new int[2];
}
private int find(int[] parent, int f) {
if (f != parent[f]) {
parent[f] = find(parent, parent[f]);
}
return parent[f];
}
}
class DSU {
int[] parent;
int[] rank;
public DSU(int size) {
parent = new int[size];
for (int i = 0; i < size; i++) parent[i] = i;
rank = new int[size];
}
public int find(int x) {
if (parent[x] != x) parent[x] = find(parent[x]);
return parent[x];
}
public boolean union(int x, int y) {
int xr = find(x), yr = find(y);
if (xr == yr) {
return false;
} else if (rank[xr] < rank[yr]) {
parent[xr] = yr;
} else if (rank[xr] > rank[yr]) {
parent[yr] = xr;
} else {
parent[yr] = xr;
rank[xr]++;
}
return true;
}
}