-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathPascalsTriangleII119.java
57 lines (51 loc) · 1.48 KB
/
PascalsTriangleII119.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/**
* Given a non-negative index k where k ≤ 33, return the kth index row of the
* Pascal's triangle.
*
* Note that the row index starts from 0.
* https://upload.wikimedia.org/wikipedia/commons/0/0d/PascalTriangleAnimated2.gif
*
* In Pascal's triangle, each number is the sum of the two numbers directly above it.
*
* Example:
* Input: 3
* Output: [1,3,3,1]
*
* Follow up:
* Could you optimize your algorithm to use only O(k) extra space?
*/
public class PascalsTriangleII119 {
public List<Integer> getRow(int rowIndex) {
LinkedList<Integer> res = new LinkedList<>();
res.add(1);
if (rowIndex == 0) return res;
res.add(1);
if (rowIndex == 1) return res;
int i = 2;
while (i <= rowIndex) {
int size = res.size();
res.add(1);
int pre = res.removeFirst();
for (int j=0; j<size-1; j++) {
int now = res.removeFirst();
res.add(pre + now);
pre = now;
}
res.add(1);
i++;
}
return res;
}
/**
* https://leetcode.com/problems/pascals-triangle-ii/discuss/38420/Here-is-my-brief-O(k)-solution
*/
public List<Integer> getRow2(int rowIndex) {
long nCk = 1;
List<Integer> result = new ArrayList<Integer>();
for(int i=0;i<=rowIndex;i++){
result.add((int)nCk);
nCk = nCk *(rowIndex-i)/(i+1);
}
return result;
}
}