-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathBinaryTreeVerticalOrderTraversal314.java
200 lines (176 loc) · 4.72 KB
/
BinaryTreeVerticalOrderTraversal314.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/**
* Given a binary tree, return the vertical order traversal of its nodes' values.
* (ie, from top to bottom, column by column).
*
* If two nodes are in the same row and column, the order should be from left to right.
*
* Examples:
*
* 1. Given binary tree [3,9,20,null,null,15,7],
* 3
* /\
* / \
* 9 20
* /\
* / \
* 15 7
* return its vertical order traversal as:
* [
* [9],
* [3,15],
* [20],
* [7]
* ]
*
*
* 2. Given binary tree [3,9,8,4,0,1,7],
* 3
* /\
* / \
* 9 8
* /\ /\
* / \/ \
* 4 01 7
* return its vertical order traversal as:
* [
* [4],
* [9],
* [3,0,1],
* [8],
* [7]
* ]
*
*
* 3. Given binary tree [3,9,8,4,0,1,7,null,null,null,2,5] (0's right child is 2 and 1's left child is 5),
* 3
* /\
* / \
* 9 8
* /\ /\
* / \/ \
* 4 01 7
* /\
* / \
* 5 2
* return its vertical order traversal as:
* [
* [4],
* [9,5],
* [3,0,1],
* [8,2],
* [7]
* ]
*
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class BinaryTreeVerticalOrderTraversal314 {
public List<List<Integer>> verticalOrder(TreeNode root) {
if (root == null) return new ArrayList<List<Integer>>();
Map<Integer, List<Integer>> map = new HashMap<>();
Queue<TreeNode> q = new LinkedList<>();
Map<TreeNode, Integer> vs = new HashMap<>();
q.offer(root);
vs.put(root, 0);
int min = 0;
while (!q.isEmpty()) {
TreeNode curr = q.poll();
int i = vs.get(curr);
if (curr.left != null) {
vs.put(curr.left, i-1);
q.offer(curr.left);
}
if (curr.right != null) {
vs.put(curr.right, i+1);
q.offer(curr.right);
}
map.computeIfAbsent(i, p -> new ArrayList<Integer>()).add(curr.val);
min = Math.min(min, i);
}
List<List<Integer>> res = new ArrayList<>();
while (map.containsKey(min)) {
res.add(map.get(min++));
}
return res;
}
public List<List<Integer>> verticalOrder2(TreeNode root) {
if (root == null) return new ArrayList<List<Integer>>();
Map<Integer, List<Integer>> map = new HashMap<>();
Queue<TreeNode> q = new LinkedList<>();
Queue<Integer> qi = new LinkedList<>();
q.add(root);
qi.add(0);
int min = 0;
while (!q.isEmpty()) {
TreeNode curr = q.remove();
Integer i = qi.remove();
if (curr.left != null) {
qi.add(i-1);
q.add(curr.left);
}
if (curr.right != null) {
qi.add(i+1);
q.add(curr.right);
}
if (!map.containsKey(i)) {
map.put(i, new ArrayList<Integer>());
}
map.get(i).add(curr.val);
// map.computeIfAbsent(i, p -> new ArrayList<Integer>()).add(curr.val);
min = Math.min(min, i);
}
List<List<Integer>> res = new ArrayList<>();
while (map.containsKey(min)) {
res.add(map.get(min++));
}
return res;
}
/**
* https://leetcode.com/problems/binary-tree-vertical-order-traversal/discuss/76401/5ms-Java-Clean-Solution
*/
public List<List<Integer>> verticalOrder3(TreeNode root) {
List<List<Integer>> cols = new ArrayList<>();
if (root == null) {
return cols;
}
int[] range = new int[] {0, 0};
getRange(root, range, 0);
for (int i = range[0]; i <= range[1]; i++) {
cols.add(new ArrayList<Integer>());
}
Queue<TreeNode> queue = new LinkedList<>();
Queue<Integer> colQueue = new LinkedList<>();
queue.add(root);
colQueue.add(-range[0]);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
int col = colQueue.poll();
cols.get(col).add(node.val);
if (node.left != null) {
queue.add(node.left);
colQueue.add(col - 1);
}
if (node.right != null) {
queue.add(node.right);
colQueue.add(col + 1);
}
}
return cols;
}
public void getRange(TreeNode root, int[] range, int col) {
if (root == null) {
return;
}
range[0] = Math.min(range[0], col);
range[1] = Math.max(range[1], col);
getRange(root.left, range, col - 1);
getRange(root.right, range, col + 1);
}
}