diff --git a/README.rst b/README.rst
index 61f2479c..3eed7617 100644
--- a/README.rst
+++ b/README.rst
@@ -93,11 +93,7 @@ Required at runtime:
(for ``Data`` and ``NetCDFDictionary``)
Optional *(used only in certain classes and methods)*:
- - `PyNGL `_
- (for ``NetCDFDictionary``)
- `Matplotlib `_
- - `Matplotlib Basemap Toolkit `_
- (for drawing maps)
- `Cartopy `_
(for some plotting features)
- `mpi4py `_
diff --git a/docs/source/api/climate/map_plots.rst b/docs/source/api/climate/map_plots.rst
index 415c618d..5ba17481 100644
--- a/docs/source/api/climate/map_plots.rst
+++ b/docs/source/api/climate/map_plots.rst
@@ -1,8 +1,8 @@
-climate.map_plots
+climate.map_plot
=================
-.. automodule:: pyunicorn.climate.map_plots
+.. automodule:: pyunicorn.climate.map_plot
:synopsis: spatially embedded complex networks, multivariate data,
time series surrogates
:members:
diff --git a/notebooks/tutorial_ClimateNetworks.ipynb b/notebooks/tutorial_ClimateNetworks.ipynb
index 2174ef44..d0650e42 100644
--- a/notebooks/tutorial_ClimateNetworks.ipynb
+++ b/notebooks/tutorial_ClimateNetworks.ipynb
@@ -13,7 +13,7 @@
"id": "677ae7d7",
"metadata": {},
"source": [
- "The objective of this tutorial is to introduce climate networks and explain and illustrate their application with the __pyunicorn__ package. First some theoretical background for understanding general climate networks will be given and then some methods provided by `pyunicorn.climate.ClimateNetwork` will be illustrated. An introduction and application of coupled climate networks will follow. For a detailed discussion and further references, please consult __[Donges et al., 2015](https://aip.scitation.org/doi/10.1063/1.4934554)__, on which this tutorial is based. "
+ "The objective of this tutorial is to introduce climate networks, and to explain and illustrate their application with the `pyunicorn` package. First some theoretical background for understanding general climate networks will be given, and then some methods provided by `pyunicorn.climate.ClimateNetwork` will be illustrated. An introduction and application of coupled climate networks will follow. For a detailed discussion and further references, please consult __[Donges et al., 2015](https://aip.scitation.org/doi/10.1063/1.4934554)__, on which this tutorial is based. "
]
},
{
@@ -29,9 +29,9 @@
"id": "a56c11e0",
"metadata": {},
"source": [
- "_Climate networks (CN)_ are a way to apply complex network theory to the climate system, by assuming that each node represents a varying dynamical system. Of interest is then the collective behaviour of these interacting dynamical system and the structure of the resulting network. This approach was first introduced by __[Tsonis and Roebber, 2004](https://www.sciencedirect.com/science/article/abs/pii/S0378437103009646)__.\n",
+ "_Climate networks (CN)_ are a way to apply complex network theory to the climate system, by assuming that each node represents a varying dynamical system. Of interest is then the collective behaviour of these interacting dynamical systems and the structure of the resulting network. This approach was first introduced by __[Tsonis and Roebber, 2004](https://www.sciencedirect.com/science/article/abs/pii/S0378437103009646)__.\n",
"\n",
- "Climate network analysis is a versatile approach for investigating climatological data and can be used as a complementary method to classical techniques from multivariate statistics. The approach allows for the analysis of single fields of climatological time series, e.g. surface air temperature observed on a grid, or even two or more fields. It has been succesfully applied in many cases, for example to dynamics and predictability of the El Niño Phenomenon \\[__[Radebach et al., 2013](https://arxiv.org/abs/1310.5494)__\\]."
+ "CN analysis is a versatile approach for investigating climatological data, and it can be used as a complementary method to classical techniques from multivariate statistics. The approach allows for the analysis of single fields of climatological time series, e.g., surface air temperature observed on a grid, or even two or more fields. It has been successfully applied in many cases, for example to dynamics and predictability of the El Niño Phenomenon (__[Radebach et al., 2013](https://arxiv.org/abs/1310.5494)__)."
]
},
{
@@ -39,7 +39,7 @@
"id": "05e76cc7",
"metadata": {},
"source": [
- "## Theory of Climate Networks (CN)"
+ "## Theory of Climate Networks (CNs)"
]
},
{
@@ -47,7 +47,7 @@
"id": "fcc79d2d",
"metadata": {},
"source": [
- "Climate networks (class `climate.ClimateNetwork`) are a typical application of _functional networks_, which allow to study the dynamical relationships between subsystems of a high-dimensional complex system by constructing networks from it. The package provides classes for the construction and analysis of such networks, representing the statistical interdependency structure within and between fields of time series using various similarity measures."
+ "CNs are a typical application of _functional networks_, which allow to study the dynamical relationships between subsystems of a high-dimensional complex system by constructing networks from it. `pyunicorn` provides classes for the construction and analysis of such networks, representing the statistical interdependency structure within and between fields of time series using various similarity measures."
]
},
{
@@ -63,13 +63,9 @@
"id": "30cd9555",
"metadata": {},
"source": [
- "Climate Networks represent strong statistical interrelationships between time series of climatological fields. These statistical interrelationships can be estimated with methods from the `timeseries.CouplingAnalysis` class in terms of matrices of _statistical similarities_ $\\textbf{S}$, such as the _(lagged) classical linear Pearson product-moment correlation coefficient_ (CC). \n",
- "\n",
- "The CC of two zero-mean time series Variable $X$,$Y$, implemented in `CouplingAnalysis.cross_correlation`, is given by \n",
- "\n",
- "$$\\rho_{XY}(\\tau)=\\frac{\\langle X_{t-\\tau}, Y_t \\rangle}{\\sigma_X \\sigma_Y}$$\n",
- "\n",
- "which depents on the covariance $\\langle X_{t-\\tau}, Y_t \\rangle$ and standard deviations $\\sigma_X, \\sigma_Y$. Lags $\\tau > 0$ correspond to the linear association of past values of $X$ with $Y$, and vice versa for $\\tau < 0$. "
+ "CNs represent strong statistical interrelationships between time series of climatological fields. These statistical interrelationships can be estimated with methods from the `funcnet.CouplingAnalysis` class in terms of matrices of _statistical similarities_ $\\textbf{S}$, such as the _(lagged) classical linear Pearson product-moment correlation coefficient_ (CC). The CC of two zero-mean time series variables $X,Y$, as implemented in `funcnet.CouplingAnalysis.cross_correlation()`, is given by \n",
+ "$$\\rho_{XY}(\\tau)=\\frac{\\langle X_{t-\\tau}, Y_t \\rangle}{\\sigma_X \\sigma_Y}\\,,$$\n",
+ "which depends on the covariance $\\langle X_{t-\\tau}, Y_t \\rangle$ and the standard deviations $\\sigma_X, \\sigma_Y$. Lags $\\tau > 0$ correspond to the linear association of past values of $X$ with $Y$, and vice versa for $\\tau < 0$. "
]
},
{
@@ -77,7 +73,7 @@
"id": "70377c40",
"metadata": {},
"source": [
- "#### Similarity Measures for Climate Networks"
+ "### Similarity Measures for CNs"
]
},
{
@@ -85,13 +81,9 @@
"id": "fadb2909",
"metadata": {},
"source": [
- "By thresholding the matrix of a statistical similarity measure $\\textbf{S}$, e.g. based on the CC from above, the interellationships between time series of climate networks can be reconstructed:\n",
- "\n",
- "$$A_{pq} = \\Theta(S_{pq}-\\beta), \\text{ if } p \\neq q$$\n",
- "\n",
- "and 0 otherwise. $\\Theta$ is the Heaviside function, $\\beta$ denotes a threshold parameter and $A_{pp} = 0$ is set for all nodes $p$ to exclude self-loops. \n",
- "\n",
- "A climate network that is reconstructed using the pearson correlation from above is call _pearson correlation climate network_."
+ "By thresholding the matrix of a statistical similarity measure $\\textbf{S}$, the interrelationships between time series of climate networks can be reconstructed:\n",
+ "$$A_{pq} = \\Theta(S_{pq}-\\beta)\\quad \\text{ if } p \\neq q; \\qquad 0\\quad\\text{otherwise}\\,,$$\n",
+ "where $\\Theta$ is the Heaviside function, $\\beta$ denotes a threshold parameter, and $A_{pp} = 0$ for all nodes $p$ to exclude self-loops. A CN that is reconstructed using the Pearson CC from above is called a _Pearson correlation CN_."
]
},
{
@@ -99,79 +91,43 @@
"id": "9c64c013",
"metadata": {},
"source": [
- "## Constructing CN with pyunicorn"
+ "## Constructing CNs"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
- "id": "3027c7f8",
+ "id": "ff7f5d81-129e-4966-a7fc-a0d25aea87f3",
"metadata": {},
"source": [
- "After establishing some basic theoretic background, we can use pyunicorn to try out some tools for climate networks. First, download the data set following this __[link](https://psl.noaa.gov/repository/entry/show?entryid=synth%3Ae570c8f9-ec09-4e89-93b4-babd5651e7a9%3AL25jZXAucmVhbmFseXNpcy5kZXJpdmVkL3N1cmZhY2UvYWlyLm1vbi5tZWFuLm5j)__ and copy it to the directory \"notebooks\" of this script ot change the path below."
+ "Having established some basic theoretic background, we will now use `pyunicorn` to construct a CN. We start with some imports and some specifications regarding an example __[NOAA dataset](https://psl.noaa.gov/repository/entry/show?entryid=synth%3Ae570c8f9-ec09-4e89-93b4-babd5651e7a9%3AL25jZXAucmVhbmFseXNpcy5kZXJpdmVkL3N1cmZhY2UvYWlyLm1vbi5tZWFuLm5j)__, which is already contained in this notebook's directory."
]
},
{
"cell_type": "code",
"execution_count": 1,
- "id": "35c8e273",
- "metadata": {},
- "outputs": [],
- "source": [
- "DATA_FILENAME = \"./air.mon.mean.nc\""
- ]
- },
- {
- "cell_type": "markdown",
- "id": "543a9d17",
- "metadata": {},
- "source": [
- "Now we will start with some imports and some specifications regarding the data set."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
"id": "e793f1a2",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
- "from pyunicorn import climate\n",
- "from matplotlib import pyplot as plt"
+ "from matplotlib import pyplot as plt\n",
+ "from pyunicorn import climate"
]
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "a1e3f614",
+ "execution_count": 2,
+ "id": "6f1a55f9-8560-484d-ab6a-17ba8b8cd67c",
"metadata": {},
"outputs": [],
"source": [
- "FILE_TYPE = \"NetCDF\"\n",
+ "DATA_FILENAME = \"./air.mon.mean.nc\"\n",
+ "# Indicate data source (optional)\n",
+ "DATA_SOURCE = \"ncep_ncar_reanalysis\"\n",
"# Type of data file (\"NetCDF\" indicates a NetCDF file with data on a regular\n",
"# lat-lon grid, \"iNetCDF\" allows for arbitrary grids - > see documentation).\n",
- "# For example, the \"NetCDF\" FILE_TYPE is compatible with data from the IPCC\n",
- "# AR4 model ensemble or the reanalysis data provided by NCEP/NCAR."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "766f7c90",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Indicate data source (optional)\n",
- "DATA_SOURCE = \"ncep_ncar_reanalysis\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "30518b4e",
- "metadata": {},
- "outputs": [],
- "source": [
+ "FILE_TYPE = \"NetCDF\"\n",
"# Name of observable in NetCDF file (\"air\" indicates surface air temperature\n",
"# in NCEP/NCAR reanalysis data)\n",
"OBSERVABLE_NAME = \"air\""
@@ -179,68 +135,32 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "24efb40c",
+ "execution_count": 3,
+ "id": "12e44ccb-ba25-4bf9-8170-ed12310b739b",
"metadata": {},
"outputs": [],
"source": [
- "# Select a subset in time and space from the data (e.g., a particular region\n",
- "# or a particular time window, or both)\n",
+ "# Select a region in time and space from the data (here the whole dataset)\n",
"WINDOW = {\"time_min\": 0., \"time_max\": 0., \"lat_min\": 0, \"lon_min\": 0,\n",
- " \"lat_max\": 30, \"lon_max\": 0} # selects the whole data set"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "6373f01d",
- "metadata": {},
- "outputs": [],
- "source": [
+ " \"lat_max\": 30, \"lon_max\": 0}\n",
"# Indicate the length of the annual cycle in the data (e.g., 12 for monthly\n",
- "# data). This is used for calculating climatological anomaly values\n",
- "# correctly.\n",
+ "# data). This is used for calculating climatological anomaly values.\n",
"TIME_CYCLE = 12"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
- "id": "ef63ac55",
- "metadata": {},
- "source": [
- "Now we set some values related to the climate network construction, the first being the threshold $\\beta$ from above."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "b6cf01fc",
- "metadata": {},
- "outputs": [],
- "source": [
- "# For setting fixed threshold\n",
- "THRESHOLD = 0.5\n",
- "\n",
- "# For setting fixed link density\n",
- "LINK_DENSITY = 0.005\n",
- "\n",
- "# Indicates whether to use only data from winter months (DJF) for calculating\n",
- "# correlations\n",
- "WINTER_ONLY = False"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "dc905586",
+ "id": "9f54ffe5-02a5-47e4-a459-870e1e8afef6",
"metadata": {},
"source": [
- "Now we create a ClimateData object containing our data and then print the information."
+ "Now we set some parameters for the CN construction, the first being the threshold $\\beta$ from above, and create a `ClimateData` object containing our data."
]
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "4e49c74a",
+ "execution_count": 4,
+ "id": "baf245bd-2f3e-401d-bc1d-9943fee4bbf2",
"metadata": {
"scrolled": true
},
@@ -250,7 +170,6 @@
"output_type": "stream",
"text": [
"Reading NetCDF File and converting data to NumPy array...\n",
- "File format: NETCDF4_CLASSIC\n",
"Global attributes:\n",
"description: Data from NCEP initialized reanalysis (4x/day). These are the 0.9950 sigma level values\n",
"platform: Model\n",
@@ -280,26 +199,33 @@
}
],
"source": [
+ "# For setting fixed threshold\n",
+ "THRESHOLD = 0.5\n",
+ "# For setting fixed link density\n",
+ "LINK_DENSITY = 0.005\n",
+ "# Indicates whether to use only data from winter months (DJF) for calculating\n",
+ "# correlations\n",
+ "WINTER_ONLY = False\n",
+ "\n",
"data = climate.ClimateData.Load(\n",
" file_name=DATA_FILENAME, observable_name=OBSERVABLE_NAME,\n",
" data_source=DATA_SOURCE, file_type=FILE_TYPE,\n",
" window=WINDOW, time_cycle=TIME_CYCLE)\n",
- "\n",
- "# Print some information on the data set\n",
"print(data)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
- "id": "2980a2c0",
+ "id": "2fade6f6-8457-436f-a52a-77464e92fd54",
"metadata": {},
"source": [
- "Now we create a climate network based on Pearson correlation without lag and with fixed threshold."
+ "Next, we construct a CN based on the Pearson CC, without lag and with fixed threshold. Alternatively, several other similarity measures and construction mechanisms may be used as well."
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 5,
"id": "c5326b90",
"metadata": {},
"outputs": [
@@ -322,30 +248,38 @@
]
},
{
- "cell_type": "markdown",
- "id": "5e7b5963",
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "2cdee7ef-7d2f-46d9-83ed-c9253e0100c0",
"metadata": {},
+ "outputs": [],
"source": [
- "Alternatively, several similarity measures and construction mechanisms may be chosen here."
+ "# Create a climate network based on Pearson correlation without lag and with\n",
+ "# fixed link density\n",
+ "# net = climate.TsonisClimateNetwork(\n",
+ "# data, link_density=LINK_DENSITY, winter_only=WINTER_ONLY)"
]
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "b8c963fd",
+ "execution_count": 7,
+ "id": "e6bf3b44-193b-48c0-b7be-f056bd35d72c",
"metadata": {},
"outputs": [],
"source": [
- "# Create a climate network based on Pearson correlation without lag and with\n",
- "# fixed link density\n",
- "# net = climate.TsonisClimateNetwork(\n",
- "# data, link_density=LINK_DENSITY, winter_only=WINTER_ONLY)\n",
- "\n",
"# Create a climate network based on Spearman's rank order correlation without\n",
"# lag and with fixed threshold\n",
"# net = climate.SpearmanClimateNetwork(\n",
- "# data, threshold=THRESHOLD, winter_only=WINTER_ONLY)\n",
- "\n",
+ "# data, threshold=THRESHOLD, winter_only=WINTER_ONLY)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "5cdcfc8a-6448-4df3-b49f-f3e5d220f0f2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
"# Create a climate network based on mutual information without lag and with\n",
"# fixed threshold\n",
"# net = climate.MutualInfoClimateNetwork(\n",
@@ -357,12 +291,12 @@
"id": "b443476e",
"metadata": {},
"source": [
- "We finish by doing some calculations and saving them to text files."
+ "We finish by calculating some basic network measures for the resulting CN, optionally saving them to text files."
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 9,
"id": "4f568b0f",
"metadata": {},
"outputs": [
@@ -396,15 +330,10 @@
"# Get maximum link distance\n",
"mld = net.max_link_distance()\n",
"\n",
- "#\n",
- "# Save results to text file\n",
- "#\n",
- "\n",
"# Save the grid (mainly vertex coordinates) to text files\n",
- "data.grid.save_txt(filename=\"grid.txt\")\n",
- "\n",
+ "#data.grid.save_txt(filename=\"grid.txt\")\n",
"# Save the degree sequence. Other measures may be saved similarly.\n",
- "np.savetxt(\"degree.txt\", degree)"
+ "#np.savetxt(\"degree.txt\", degree)"
]
},
{
@@ -412,63 +341,28 @@
"id": "15af9941",
"metadata": {},
"source": [
- "### Plotting"
+ "## Plotting CNs"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
- "id": "4ee5b44c",
+ "id": "b26e5953-53c6-418a-b08b-509ad415081f",
"metadata": {},
"source": [
- "`pyunicorn` provides a basic plotting feature based on the cartopy package and matplotlib that can be used to have a first look at the generated data. Also the plotting with the `pyNGL` package is still supported but not recommended, as it is deprecated and its development currently at halt in favor for the cartopy project. For plotting in pyunicorn with `pyNGL` an old tutorial can be found in `examples\\tutorials\\climate_networks.py`."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3ba76b85",
- "metadata": {},
- "source": [
- "#### Cartopy"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "80c32759",
- "metadata": {},
- "source": [
- "For more info on and how to install cartopy please check out their webpage: https://scitools.org.uk/cartopy/docs/latest/ !\n",
- "\n",
- "*Copyright: Cartopy. Met Office. git@github.com:SciTools/cartopy.git.* "
- ]
- },
- {
- "cell_type": "markdown",
- "id": "51440d40",
- "metadata": {},
- "source": [
- "We start by creating a plot class, which later on we can modify by acessing its axes. "
+ "`pyunicorn` provides a basic plotting feature based on the __[`cartopy`](https://scitools.org.uk/cartopy/docs/latest/)__ and `matplotlib` packages, which can be used to have a first look at the generated data. We start by initializing a `MapPlot` object:"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 10,
"id": "b823297c",
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Created plot class.\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "# create a Cartopy plot instance called cn_plot (cn for climate network)\n",
+ "# create a Cartopy plot instance called map_plot\n",
"# from the data with title DATA_SOURCE\n",
- "cn_plot = climate.CartopyPlots(data.grid, DATA_SOURCE)"
+ "map_plot = climate.MapPlot(data.grid, DATA_SOURCE)"
]
},
{
@@ -476,45 +370,20 @@
"id": "422af668",
"metadata": {},
"source": [
- "Now we add the network measures that we want to plot out via the `.add_dataset()` method, which takes a title and a network measure. The title will also be the name of the plot that will be saved."
+ "With `MapPlot.plot()`, we can now plot some of our previously calculated measures on the given grid."
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 11,
"id": "056f3a92",
"metadata": {},
- "outputs": [],
- "source": [
- "# Add network measures to the plotting queue\n",
- "cn_plot.add_dataset(\"Degree\", degree)\n",
- "cn_plot.add_dataset(\"Closeness\", closeness)\n",
- "cn_plot.add_dataset(\"Betweenness (log10)\", np.log10(betweenness + 1))\n",
- "cn_plot.add_dataset(\"Clustering\", clustering)\n",
- "cn_plot.add_dataset(\"Average link distance\", ald)\n",
- "cn_plot.add_dataset(\"Maximum link distance\", mld)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a76114b5",
- "metadata": {},
- "source": [
- "Before plotting, we can change the plots by accessing `ax`, since cartopy is based on `maplotlib`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "9a001877",
- "metadata": {
- "scrolled": true
- },
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAESCAYAAACly0xlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1fWw3zuzVVpJq94s2ZZsy0XuNrYBNzAYTAktYCAGGxJCKIEEAl9CJwm9hO4AAQIhgQA/ejVgYjC2ce9dclOvK+2uts3c74+V1l6rWLLkBvM+jx9rZ+7MnHt3du6Zc08RUkqJgYGBgYGBgUE3UI60AAYGBgYGBgbHPoZCYWBgYGBgYNBtDIXCwMDAwMDAoNsYCoWBgYGBgYFBtzEUCgMDAwMDA4NuYygUBgYGBgYGBt3GUCgMDAwMDAwMuo2hUBgYGBgYGBh0G0OhMDAwMDAwMOg2hkJhYGBw1LBjxw6EELzyyiuH5Px9+vRh9uzZh+TcBgY/dQyFwsDAwMDAwKDbmI60AAYGBgaHi82bN6MoxnuUgcGhwPhlGRgcA+i6js/nO+jjvV5vD0pz7GK1WjGbzUdaDAODHyWGQmFwSLn77rsRQrBt2zZmz56N0+kkISGBOXPmtJrk/vWvf3HccccRExNDYmIikyZN4osvvohq8+mnnzJx4kRiY2OJi4vjjDPOYP369VFtZs+ejcPhoKioiOnTpxMbG0tWVhb33nsvXS2uO2XKFAoLC9mwYQNTp04lJiaG7OxsHnrooVZtfT4fd999NwMGDMBms5GZmcl5553H9u3bI20eeeQRjj/+eJKTk7Hb7YwePZq333671bmEEFx33XW8/vrrDBkyBKvVymeffdYlmZcvX86kSZOIiYnhT3/6EwB+v5+77rqLfv36YbVaycnJ4ZZbbsHv90ed4+WXX+akk04iLS0Nq9XK4MGDee6551pdq0+fPpx55pl89913HHfccdhsNvLy8nj11Vej2tXW1nLzzTczdOhQHA4H8fHxnH766axevbrDvrz88ssIIVi5cmWrfffddx+qqlJSUgLA1q1bOf/888nIyMBms9GrVy9mzpyJy+WKkndfH4pgMMg999xD//79sdlsJCcnc+KJJzJv3ryOB9nAwKAVhkJhcFi48MILaWxs5P777+fCCy/klVde4Z577onsv+eee5g1axZms5l7772Xe+65h5ycHL7++utIm9dee40zzjgDh8PBgw8+yB133MGGDRs48cQT2bFjR9T1NE3jtNNOIz09nYceeojRo0dz1113cdddd3VZ9rq6Ok477TSGDx/Oo48+ysCBA7n11lv59NNPo6535plncs899zB69GgeffRRbrjhBlwuF+vWrYu0e+KJJxg5ciT33nsv9913HyaTiZ///Od8/PHHra779ddf87vf/Y6LLrqIJ554gj59+nRa5pqaGk4//XRGjBjB3/72N6ZOnYqu65x99tk88sgjnHXWWTz11FOcc845PP7441x00UVRxz/33HP07t2bP/3pTzz66KPk5ORwzTXX8Mwzz7S61rZt27jgggs45ZRTePTRR0lMTGT27NlRil5RURHvvfceZ555Jo899hh/+MMfWLt2LZMnT6a0tLTdflxwwQXY7XZef/31Vvtef/11pkyZQnZ2NoFAgOnTp7N48WKuv/56nnnmGa666iqKioqor69v9/x3330399xzD1OnTuXpp5/mtttuIzc3lxUrVnRilA0MDKKQBgaHkLvuuksC8oorrojafu6558rk5GQppZRbt26ViqLIc889V2qaFtVO13UppZSNjY3S6XTKX/3qV1H7y8vLZUJCQtT2yy+/XALy+uuvjzrPGWecIS0Wi6yqquq0/JMnT5aAfPXVVyPb/H6/zMjIkOeff35k20svvSQB+dhjj7U6R0sfpJTS6/VG7QsEArKwsFCedNJJUdsBqSiKXL9+fadl3V/muXPnRm1/7bXXpKIo8ttvv43aPnfuXAnIhQsXtiunlFJOnz5d5uXlRW3r3bu3BOSCBQsi2yorK6XVapU33XRTZJvP52v13RYXF0ur1SrvvffeqG2AfPnllyPbLr74YpmVlRV1/IoVK6LarVy5UgLyrbfeam9YIvJefvnlkc/Dhw+XZ5xxRofHGBgYdA7DQmFwWLj66qujPk+cOJGamhoaGhp477330HWdO++8s5XDnBACgHnz5lFfX8/FF19MdXV15J+qqowbN4758+e3uuZ1110XdZ7rrruOQCDAl19+2SXZHQ4Hv/jFLyKfLRYLxx13HEVFRZFt77zzDikpKVx//fWtjm/pA4Ddbo/8XVdXh8vlYuLEiW2+EU+ePJnBgwd3SdYWrFYrc+bMidr21ltvMWjQIAYOHBg1hieddBJA1BjuK6fL5aK6uprJkydTVFQUtYQAMHjwYCZOnBj5nJqaSkFBQdT4WK3WyHeraRo1NTU4HA4KCgoOaA247LLLKC0tjZLv9ddfx263c/755wOQkJAAwOeff94lfxGn08n69evZunVrp48xMDBoG0OhMDgs5ObmRn1OTEwEwpPq9u3bURSlw8mz5YF/0kknkZqaGvXviy++oLKyMqq9oijk5eVFbRswYABAq+WRA9GrV68opaBF/rq6usjn7du3U1BQgMnUceDURx99xPjx47HZbCQlJZGamspzzz3XapIG6Nu3b5fk3Jfs7GwsFkvUtq1bt7J+/fpW49cyLvuO4cKFC5k2bRqxsbE4nU5SU1Mjfhj7y7r/dwutx0fXdR5//HH69++P1WolJSWF1NRU1qxZ02bf9+WUU04hMzMzsuyh6zr/+c9/+NnPfkZcXBwQHqvf//73vPjii6SkpDB9+nSeeeaZA5773nvvpb6+ngEDBjB06FD+8Ic/sGbNmg6PMTAwaBsjbNTgsKCqapvbZSedJHVdB8J+FBkZGa32H2gi7w7dlb2Fb7/9lrPPPptJkybx7LPPkpmZidls5uWXX+bf//53q/b7Wgm6SlvH6rrO0KFDeeyxx9o8JicnBwgrRyeffDIDBw7kscceIycnB4vFwieffMLjjz8e+S5a6Mz43Hfffdxxxx1cccUV/PnPfyYpKQlFUbjxxhtbnW9/VFXlkksu4YUXXuDZZ59l4cKFlJaWRlmNAB599FFmz57N+++/zxdffMFvf/tb7r//fhYvXkyvXr3aPPekSZPYvn175JgXX3yRxx9/nLlz5/LLX/6yQ7kMDAyiMRQKgyNOfn4+uq6zYcMGRowY0W4bgLS0NKZNm3bAc+q6TlFRUeTtG2DLli0AXXJu7Cz5+fksWbKEYDDYbljiO++8g81m4/PPP8dqtUa2v/zyyz0uT3syrl69mpNPPrmVxWVfPvzwQ/x+Px988EGU9aGtZaXO8vbbbzN16lT+8Y9/RG2vr68nJSXlgMdfdtllPProo3z44Yd8+umnpKamMn369Fbthg4dytChQ7n99tv5/vvvOeGEE5g7dy5/+ctf2j13UlISc+bMYc6cObjdbiZNmsTdd99tKBQGBl3EWPIwOOKcc845KIrCvffe2+ptteUtd/r06cTHx3PfffcRDAZbnaOqqqrVtqeffjrqPE8//TRms5mTTz65h3sA559/PtXV1VHX3PfaEH7TFkKgaVpk344dO3jvvfd6XJ62uPDCCykpKeGFF15ota+pqQmPxxORE6ItDC6Xq1uKj6qqrSw6b731ViTk80AMGzaMYcOG8eKLL/LOO+8wc+bMKKtUQ0MDoVAo6pihQ4eiKEqrkNh9qampifrscDjo169fh8cYGBi0jWGhMDji9OvXj9tuu40///nPTJw4kfPOOw+r1crSpUvJysri/vvvJz4+nueee45Zs2YxatQoZs6cSWpqKrt27eLjjz/mhBNOiJrMbTYbn332GZdffjnjxo3j008/5eOPP+ZPf/oTqampPd6Hyy67jFdffZXf//73/PDDD0ycOBGPx8OXX37JNddcw89+9jPOOOMMHnvsMU477TQuueQSKisreeaZZ+jXr99hWbefNWsW//3vf7n66quZP38+J5xwApqmsWnTJv773//y+eefM2bMGE499VQsFgtnnXUWv/71r3G73bzwwgukpaVRVlZ2UNc+88wzuffee5kzZw7HH388a9eu5fXXX2/l59IRl112GTfffDNAq+WOr7/+muuuu46f//znDBgwgFAoxGuvvYaqqhHHzbYYPHgwU6ZMYfTo0SQlJbFs2TLefvvtKIdeAwODTnLkAkwMfgq0hI3uH6r58ssvS0AWFxdHtr300kty5MiR0mq1ysTERDl58mQ5b968qOPmz58vp0+fLhMSEqTNZpP5+fly9uzZctmyZZE2l19+uYyNjZXbt2+Xp556qoyJiZHp6enyrrvuahW6eCAmT54shwwZ0mr75ZdfLnv37h21zev1yttuu0327dtXms1mmZGRIS+44AK5ffv2SJt//OMfsn///tJqtcqBAwfKl19+OTJG+wLIa6+9tkuyHkhmKcNhqg8++KAcMmRIZJxHjx4t77nnHulyuSLtPvjgAzls2DBps9lknz595IMPPhgJjd33O+vdu3ebYZeTJ0+WkydPjnz2+XzypptukpmZmdJut8sTTjhBLlq0qFW7tsJGWygrK5OqqsoBAwa02ldUVCSvuOIKmZ+fL202m0xKSpJTp06VX375ZVS7/cNG//KXv8jjjjtOOp1Oabfb5cCBA+Vf//pXGQgE2hw/AwOD9hFSdtGzzMDgKGf27Nm8/fbbuN3uIy2KQQ9SXV1NZmYmd955J3fccceRFsfAwGA/DB8KAwODY4JXXnkFTdOYNWvWkRbFwMCgDQwfCoOfJLW1tQQCgXb3q6p6SHwtusOxKHNP8PXXX7Nhwwb++te/cs455xySKB0DA4PuYygUBj9JzjvvPP73v/+1u793795dToB1qDkWZe4J7r333kgI6FNPPXWkxTEwMGgHw4fC4CfJ8uXLozI57o/dbueEE044jBIdmGNRZgMDg58OhkJhYGBgYGBg0G0Mp0wDAwMDAwODbmMoFAYGBgYGBgbdxlAoDjPnnnsuiYmJXHDBBQB4vV5OP/10Bg4cyJAhQ6Kczqqrq5k6dSr9+/fnvPPOw+fzAbBnzx4mT57MJZdcgqZpvP/++8ycOTNy3HXXXcdpp50W+Xz77bfz4IMPHqYeHhzFxcVMnTqVwYMHM3ToUDweDz/88ANDhgyhX79+3HvvvZG2X331FaNHj+bhhx8G4He/+x1z586N7C8sLOSBBx6IfD7xxBNZsmTJ4evMIeSjjz6ioKCA/v378+KLLwLwr3/9i1GjRvGvf/3rCEvX83TnvoBw0bgRI0ZE/r366qtHohtd5lA8JwCmTJnCwIEDI+Px29/+9vB3zuDHy5HMqvVTZP78+fKDDz6Q559/vpRSSo/HI7/55hsppZSNjY2yoKBAbt26VUop5U033SSfeuqpVn/fcsstcuPGjfKZZ56Rn376qayoqIjK2njiiSfK8ePHS13XpZRSnnTSSXLBggWHq4sHxaRJkyIy1tTUyGAwKMeMGSNXr14tQ6GQHDdunFyzZo2UUsoLL7xQNjU1yYsvvlg2NjbKN998M5L90OVyyVGjRsmf/exnUspwZsjExMQfRebDYDAo+/fvL/fs2SMbGxvlgAEDZHV1tTznnHNkIBCI9PnHRHfuCymlTE5OPmKyd4dD8ZyQMpzBdO3atYe7OwY/EQwLxWFmypQpxMXFRT7HxMQwefJkIFyYqKCgIFIv4YMPPogk8fnFL37Bhx9+CIQraSqKgslkQtd10tLSUFWVsrIympqaMJvNDB48mE2bNqHrOqtXr2bMmDGHuaedZ/369ZjNZiZOnAiEqz9WVlYSCoUYNmwYqqoyc+ZMPvroIyDcfyFEpODUhAkTWLRoEQBLlixhxowZVFZWArBq1SoGDx7cbgXQY4mWN/Ps7GwcDgenn346X3zxBVJKhBAdVhA9FunufXEscyieEwYGhxpDoTiK2L17N2vWrGHUqFFAuMJjQkICANnZ2ZHKjNdccw1XXHEF8+fPj5RwbplUly1bxujRoxk/fjyLFi1i/fr15OXlYbfbj0ynOsHWrVtxOBycddZZjBo1ivvuu4/S0lKys7Mjbfbt/5w5c5gwYQKFhYXExcWRk5OD1+ulpqaGxYsXM378ePr27UtRURGLFy/m+OOPP1Jd61HaG5OzzjqLsWPHcu655x5B6Xqe7t4XEC6Pvu+SR3dKsB8tdOc5AXDBBRdExmPf5SEDg+5iJLY6SvD7/Vx00UU8/PDDxMbGdti2b9++fPfdd1HbWhSKtLQ0xo8fT//+/XnqqafQNI0JEyYcStG7TSgU4ttvv2XVqlWkpaVx2mmndWhRmDFjBjNmzIjaNn78eBYvXsySJUu45ppr2L59O4sWLWLx4sWRdegfK1deeSVXXnnlkRajx+mJ+8LpdLJq1apDLOnho7vPCYC3336bwsLCQyWiwU8Yw0JxFCCl5LLLLmPGjBlRk19CQgIulwuAkpISsrKy2j3HhAkTIhPq+PHjGTJkCOvWrTsm3tCzs7MZM2YMOTk5WK1WZsyYgdfrjbxpQef6v2jRImpqakhOTmbcuHGR8Tja+99ZsrKyujQmxzo9cV/8mOiJ54SBwaHEUCiOAv74xz8SExPD7bffHrX9zDPP5LXXXgPCnvxnnXVWu+cYNmwYGzduZNeuXWRnZ6OqKjExMXz11VdHvYVi7NixVFZWUldXh67rLFiwgNGjR6OqKmvWrEHTNN54440O+z9hwgT+/e9/069fPwBGjhzJvHnzkFKSnp5+uLpySDnuuONYt24dJSUluN1uPv300yhT9o+Nnrgvfkz0xHPCwOCQciQ9Qn+KnHzyyTIlJUXa7XaZnZ0tFyxYIAE5ePBgOXz4cDl8+HD52WefSSmlrKyslJMmTZL5+fnyZz/7mfR6vR2ee/LkyfKCCy6IfL711ltldnb2Ie1PT/HJJ5/IwsJCOWTIEPm73/1OSinlokWL5ODBg2VeXp686667Ojze5/NJi8Uin3766ci2cePGyUsvvfRQin3Yef/992X//v1lfn6+/Pvf/36kxTnkdPe+UFU18rsaPny4fOyxxw6D1N3nUD0nJk+eLAsKCiLnuOSSSw5Xlwx+Ahiptw0MDAwMDAy6jbHkYWBgYGBgYNBtDIXCwMDAwMDAoNsYCoWBgYGBgYFBtzEUCgMDAwMDA4NuYygUBgYGBgYGBt3GUCgMDAwMDAwMuo2hUBgYGBgYGBh0m2OilofP5yMQCBxpMQwMDAwMjgEsFgs2m+1Ii/GT46hXKHw+H717946UozYwMDAwMOiIjIwMiouLDaXiMHPUKxSBQIDKykp2795NfHw8VX+84kiLdMTYYElgcMB1pMU4KjDGIowxDmGMcQhjjAM0BoKMfPEDAoGAoVAcZo56haKF+Ph44uPj8VnbL1/8YyfWYiFO/HT7vy/GWIQxxiGMMQ5hjHEwOJIcMwqFgcGPmd0b+hzUcXXpKrsrnD0qy7FIT41DzuAd3T6HgcHBsGDBAh5++GGWL19OWVkZ7777Luecc06bba+++mr+/ve/8/jjj3PjjTdGttfW1nL99dfz4YcfoigK559/Pk888QQOhyPSZs2aNVx77bUsXbqU1NRUrr/+em655ZYe6YOhUBxD9As2HGkRjhqOtbE4WIXhQGTVaIfkvMcaPTUObX1Px5KScaz9Lgz24vF4GD58OFdccQXnnXdeu+3effddFi9eTFZWVqt9l156KWVlZcybN49gMMicOXO46qqr+Pe//w1AQ0MDp556KtOmTWPu3LmsXbuWK664AqfTyVVXXdXtPhgKxTGES7Fg03xHWoyjgqN9LA6VArE/HpvA4jYKBh/Kcdj/uzyaFYyj/XfxY6Iz0YdSSoQQUdusVitWq7VV29NPP53TTz+9w/OVlJRw/fXX8/nnn3PGGWdE7du4cSOfffYZS5cuZcyYMQA89dRTzJgxg0ceeYSsrCxef/11AoEAL730EhaLhSFDhrBq1Soee+wxQ6H4qWGTPfs22p1J72Aeqpquo0mJWVEQQtDgDyAQhKROUNNJjbG1+vG1J6/HJgj4uj6BhHQdTerUBbzUB700BH0kWmLQpE5pkwuLYmJe+UZSrQ78WggNnaCuYxIK7pAfnxbEFWyiNuDFqphIszmwKmYsqsrJ6QMZl9wHm3r41rAtocN2qaOawzkOXf3dHE4FpKefEQZt4/P56JvroLyq4/F2OBy43e6obXfddRd33313l6+p6zqzZs3iD3/4A0OGDGm1f9GiRTidzogyATBt2jQURWHJkiWce+65LFq0iEmTJmGxWCJtpk+fzoMPPkhdXR2JiYldlmtfDIXiENOTb6oem6DhICbRQ0FLv3Z5ailpqscbCpBsdeANBfjtiv9GtR2SkMl6V1nk88TUfnxbtQ2Afo5UtrmrODt7GDV+Dwurt0faHZ+SB8D31UVckDOSTHs5k1P708eRDEBI12hsnuTdIT+uYBP+khE06A1kmjJY7VtHo+YmRrGTbEpiiWcZX7sXEKL17JNj7sX0uJMoDuzkK/c6bk69njRTKiZhYlD/EkJSx2Gy8rMFc2kI7X0D3NxYEfn7k9L1ZNriCegaHi1AQAvxzolXkROb2OabisFPg32fAUezdcOg8wQCAcqrNIoW9CHe0XZ+yAa3Tt6kHZEIxRbask50hgcffBCTycRvf/vbNveXl5eTlpYWtc1kMpGUlER5eXmkTd++faPapKenR/YZCkUX6e6P+3CZstuiKkEh1nf43kC8oQClTS5iTRa+q9rOgxu/iNqfbounwhdes53V5zhiTVbmbvs2qs3NA6dxcnoBK+p2UxCXjllRyY5xAqBLibLPJBvSdb6s2MROTw0bXOWsqttN79gkBsdn8PbuldgUE1+VbyLZGouvTxJLly4FYKB1AP2secQpDt513YVE0ksOZzs/ADCEqSTgppQ6YkikiUaC+Pglc4khgSA+TEErSq1CIVDIbwhWQWZuuG/VxSkA1APPZD0JwCbH//HXDZ+1GrMyX/Qa9t3rPua0zME8uPELfpl3PKOScllau5Md7hoArKqJeLMNKeHyvuPJsMe3OmdHHO574kjj10KU+Vxsb6zin8VL2NBQxp+HnsmgkcNRPT5mfPMMQsDL4y4jNzbpsMklZVjR319p9GlBpJTYTeE3wt0b+hxSpWK3KZaEQP0hO79BNPEOpV2FItKmOUKxOyxfvpwnnniCFStWHNUvJsekQtFTk/qRVA6OZhZVF3H98r1WhvHJfXGH/IxJzGVZ3a7I9op9Js/XdvwQ+fvMrELsqoUfanfwyKYveWTTlwDMHXMxY5J7s3FjXtT1akK1+KWfkmApT1Z/ELXP5VVokk0AFFgGMkQZxOn2U6hLbGBS6njmuxcw1j6KEx0TWLYrnl8wDRsO1A5ubYmORggT4Ye8BXub7Zbtin4IjMnd29+B7vN4LXev49SgQUVAeALZ4anhF4teAaAu4MGqmnhw+LnUB71saqhgh7uGwQmZfFy6jlq/hyRrLDGqBY/mb1fmw0FI19ClpLTJRarNQazJSrXfjZSSREsMJkXt8WtqUuf+9Z9T6W9ko6ucuqCX6RmDWO8qY09TPaMTc3ly9M8pa2pg5vf/ICT1qOMV4JWixSTZKli6dCmFCVmsc5Vy3nfPA/Dl1BtwWtr+fjvis9L13L72Q2bmjubmQaccsP0X5Ru5bc0HCOCCnFG8tXsFE1PzUYSCguCHmh2cmNqPvw4/O/LcMawVBp3l22+/pbKyktzc3Mg2TdO46aab+Nvf/saOHTvIyMholQAyFApRW1tLRkYGEE74VVFREdWm5XNLm+5wzCkUhhLQ85y94DnKmlx8OuU6AnooSpmYO/ZiBsVnYFctrKjbxYkN/fjb5q87PN9HpesASDel8f/Sfk+8EodJmKgv0VlZnsST1U+wzreBnyecw39d70aOO56ZXMz9bORbVvEJACWhUi7nb8SThuJTwAfL6sGarhGqOoGJnABNsKw2fI5YnB3K9r2pfp9P3lb7jw85I+1a/m5hfwUjmr1Kki515k2NJ9ESA8DvV7zNwuoiNKmTaImhLuClV0wifxl2Fv0cqQecqPdXwPbFhYemjbEdHt/Ct+7vqdFqWdW0lspQNafETaWfJY9PGj8nSU1kgef7qPaFtkGUBSuo0WoZZitEAOt8G7Ardp7JfpQh+0yIl3z/Elsaww+zRaf8AXMnlQ8pwayo+LUgdcHw9/F5+ca9+5Gc8OWjAAxNyKSsqYHqgCeyXwe2e6o5Pm4CQ/OOZ3xyH3QkNsVMpj2hS8rEmvoSSrz1jEvuw6S0/nw8+Rqc5phOHTs9czAjE3OY8b9neGv3CgA2N1QS0EMoQuDRAnxevoEyn4uQrnFN/0mwIY/0gu0Rn6KepLvPySOp7HRV4dq/r+7QkVXMDwWzZs1i2rRpUdumT5/OrFmzmDNnDgATJkygvr6e5cuXM3r0aAC+/vprdF1n3LhxkTa33XYbwWAQszns6zVv3jwKCgq6vdwBIGSLre4opaGhgYSEBFwuF/Hx8Sw/7Y9HWqQjxo50lT4V7Zu3Q7pGTcBDsbsGh8lGQXxa1IN9zOcPRP5OMNsYl9yXdFs8BXFpxJqsNAR9xJos1AW8bZrz/3HcL+gfl4YqFO7b8Blflm/Cr0f7I8QpDhp1N33MuUyNm8Ro+wiuK7m5DWkFxzMTMzZsxGLGyk5WE8RHgCYkEo0gU5hDIq3Do6xj6/AvDf8AopWEw0+L4rGvBQPCVotVdbv5z85lfFWxmXsLz6TQmdWhKb4j5aEtXIM8JHRSofhD6R2Uh/a+nQy0DqA8VEG95uL/pf2eJ6qepUnu9Q/JM/ehKLiDPEsfHIoDBYUMUxqZ5gwqQpV86f6Gs+JP45yEMzstb4sl50DoUlLtdxOjmnGY2892GNBD+LQQtb1iO/xtdIYXtn3H37d/x33DfsapmYO6fLyUkvWuMra7q3hu27dU+91MTRuA0xKD02Knzu+lMeTjq4rNTErpx86mWnZ6wprw6ZlDGJ2UyzXT4lCVztds3H8yPdAzoqscDsWip18S3SE/U756PDJnHApa5qXqFXkd+lCkjCrqtBxut5tt28K+ZSNHjuSxxx5j6tSpJCUlRVkmWujTpw833nhjVB6K008/nYqKCubOnRsJGx0zZkwkbNTlclFQUMCpp57Krbfeyrp167jiiit4/PHHjSgPA9jjreeRTfNIt8bzzp6Vke121cxV+Scyq29YM20I+vjT4NO4r1lRcAV9rKzbTX2giaDUGByfwYaG8qhzn5VVyDpXGcWe8Hr/L394HUn7+uco+3DW+zZxU+p1jLAPY9mueLYgOZlfUUEx6wgvfaTQm0t4gCe5GIA0+mInnoFMJIdCzFiRSKx0/HZ4pBWJ/Vm2Kz5KqfhstZnby19njH0kyWoiabZ49Db0964qEftez5qu4W+2nIzJbWjTitIiU7IpifJQBU41AZ/uZ5N/S6TNA5WP8besB3im+gXi1XiWN62kKLiDTFM6RYEdXJ54CWNjRlGvuVjqXUE/a1+cagJ5lj5dkrmzfR00qIg0W9wB21kUExbFRG2XpGibX/U7kV/1O/GgjxdCUOjMotCZxc96DQfCfkgNQR/1QS8l3rDz8lcVm1lQvY1RiTk0hYKk2+JYXb+HJdXFzCtPY0nNDs7PGckfB0/vgV4ZHCssW7aMqVOnRj7//ve/B+Dyyy/nlVde6dQ5Xn/9da677jpOPvnkSGKrJ598MrI/ISGBL774gmuvvZbRo0eTkpLCnXfe2SPKBBgWimOG+kATX5ZvZEnNDip8DZHJf6SzF349RIrVwYKqbWTY4in3NTA0Pou7hs4g0+7Eqpr4rmo7N654i4K4dP45/jKW1OzgL+s/5eT0gWTY4smNTWRCcl/+vv07vizfxJ6m+si1P5l0LWZF5ZRvwjfmlc7L+Ef9qwAMtQ1hrW99pG0WAyllUyv5z+RmzFhJoTcxhCe9dXzNVzzfbp9/y38QtG0KPpqUif2XRgCG59TwvWcJ/61/lwa9EYBhCdnM6nscU9MLotoejELR8fLLgdnNev6PPwNgxoaVGOJI5TjOpQ8j+I5/s5xof5bzuZNeDO7Wdfe34hwsnbV01Po9bGgopyHYRJ4jhYHxXV8nPtD3syuwhy/0//DoyPNb7VtYtZ0nNs/nj4OnMyKxF5Kwj5JZqPyvais7PDXEm23MK9/7mzk9YzCqonDTwGnoUqIjiTVZsCiH//2vKxYKdyBISJc4bZYDN94Hw0Lx48FQKA4x7T2MOvNA1KTOqfOfpCHoQwLTR4znu7Ur8GgBcuyJ7G6qi7RNUhOZ5pjCENsgkkxOnqp6niBBigM7+VPaTXj1JlJNydxb8RB+6aevuTfFwZ1R1+ttzqG/NZ8v3d8AYMLUZojlvqTQmxRyKGMbFqxUET6nhRiyGUgxK4jByRyejDhB7stCtY7d+ttUyYXohM3tx3Ee20Upg2R+JCIDwEYcDhJJohdZ/VIR25Ij5zlaFIwW5WIbP/AxjwFgEzZiFDvZpkxuSb+xy+fsSHkw9XMT2uZod39H+HCzm3VsZylV7OQSHmjlzKqjodCzzpg9pVQAuDUP5aEKyjIr2b5tOzZhIyAD1GsuarRaGrRGnGoCdVodNVodr+b8vcf9FTSp4dWbiFPD34NP9/Hf+ncRCOq0OpY2rSTP3Ic0cyqLvUujjl047WasqonNDRUUu6vZ6a3lhe0LSbbEclxyHxQhUIRgh7uGta5Ski2x/PeEX5Kwn29Iy3PGm+0jpqTjglgHevaEdB2TorC0ZgdbGivpE5vMUGc2i6qLSLE6yHOkYFNMkciVnME7kFKS8bc3ueG4wfzphGFhmarrcQdCjM1KaXWNQ+kLZygURw5DoTiEHKwpuwVd6rxZ/39YFStrmzaQGJPA0voVrdolq0nUaLX0s+SxLRB+WJgxESSETdjwSR9pphRS1RQadQ+7grtbncOpJhDQA3ibIyp6m3OpDFUxKfZ4PNKLQODzpLGU9wDIogCBgoc6gvhJJgcTFlRM6GhUsB03tcSSyByeajfqYl9FwCer8MiduOVW+sgUejEYG47m86r48NBIDTXsptK+he1NK7mSZ3GQ1Ob5jhTHh5zo6GzmO+pjlvCDdzmDrQUEZYhT4qYyIfa4do/trOWhpZ9mm07Qt/eB1pa15MfEqJx65rnnU+zfyfZAMbmWXmSY0mkwu3F7GykJlqIIFacST5IpiTRTCummNHqZs8k2Z6KIzvsntPBs9YvEKHZmJ10a2RaQQb73LCEkQ1SEKqkMVTUvZ0kadTfbA8XYhY0Lnefxz7p/U2gdzITY48gyZ3BPxQP8I+cZLF0s4vV41TOsaFrNuJgxXJfStolas+ioga73EcKKxuq6PVz5w7+YmTuaN3Yt56nRF7KmvoSFVdsZkpAVcTiNN9loCPm4u3AGd6/7hPHJfUm1ORgQl0af3m6m52Xj13Sqm3wMTnFGrnE4nOoNheLIYSgUh4juKBOa1Hjb9T4Qftvx6F6S1ERSs1KJrbYTlEHKQ5XUNDjx42EZ70cdr2KmkJOopQQTVmJxEkcy+RzHRhaQyQDyCWdTq6CIH/g/EsliDxuwEUcIP5UUkUJvXJQzmdks5T2q2Uk+Y9nOUgSCPMZSzS4SyUTFzHZ+wEkm2QykgiKq2cnJXEUhJ7XZz44m/wNNjEq2h60lG1jAazRQyfX8GwXlgOc9XIwMKTzP3od+ipoUntgs2fwi8aI2j9lfmehMPxKyArhKD2xi7qyi8S2vMYzpJJB24MaHGR2Nr3iBDXzDZGaTRQHzeQkX5WRmZzG2ZBYp5LZpCesO1ezGTQ0aQfx4CODnf7wMQAEncBznkUB6h6HKB4NGiJ2sZiMLqKQILw0kkskF3I2Ftq0QanYTWknXw2RbrEa1oTq2+4sZ1c/L27tXUB9swq+F8IT8ZNmdrHWVUulr4LoBUxidmEuC2c57JaspdlezvG43mtQJ6iE+mXwdydbOOQv3NIZCceT4UTpldtcycCjpzBuoROcjPqOQaYzlfKzE0kAVrviNLN9cTBYDqaGOFfyX3gzndG4giWwkkhgSiCEh4nuwk9VUs5vv+Bd72EgG+eQzBonOHjZG1tH3ZQ5P8TLXU8ZmJnARlRRhJ+wgV8CJjOZsVvEpXhpQUNnBSnIZRi8KUTHRQDUKKinkspNV7GQVTjIZzBQSyQQOPFnuu7+tydCcFSC/ZCwNVLGAV/k3t3Bxs8n++JDzsCoVZfpneORO6mTYKVZgQmOvQ52Kmd+k/JIB1n6Rbe3dB12V25kZ7JRCsf9521MwBjOVWLofPtbWNbvKvjJuYRGf8gRxJDOc09jNWv7HK8zgRvoxDltWPf6SA8tdTzlr+RInGQwlHIbnx8tOVrOcDxjKKRRyEpJwvosFvIaHOiopppEaMhkQ5dWTRh5JZHern/tSxU7W8AUlbKSO0qh9duKoYgfvcA8JpBMiiAkzKiaKWcnF3EdylgLNCsUy3mcT32HBjoMkYnFiI4508unNMAR7J8KW+zEns5Lnav/Bw7v/zEWmE8EEizw/8GzDi2xoKMcizPSx9Gaw52cU9g1HDF0/YEqP9d/g2OZHqVAcDRys05xE8h2vE0cKU5gdeetJpTcShe2U8h3haItkehGLk095AoC+jKKYsEkykSziSWMnqxjGqWQxkCqK6c94AN7lPnazLnLd3/AKzzEbgAW8Sgb9GMcFvM8D5DOWeso5lWswYWExbzGVK7Dh4F/8AYBdrOEc/kguw9AI8QyzsBKLQKGecopYzjLe53hm4lPHobaTTKotWiamtibBkcxAxcx8/sFr3MRpXEcG/Q+rUrFHfy/qs0Cwgo8BuIC7SCGXhopYlh3gPIdTCWr/Wg7A086+aPb9Pg6F7N+b6pFSskG7Hy+7SBNTscoqVvMZJ/NrzuD3XfLvWM83fMPLSDTsxLOVxUzlSv7FH9DROIGL8ePlv9xBDXtIpS8lbORUfsMUrsCOA4GCROd1bqEf4xjFGQe+cCf5hL+xlcU4yaAPIxnNWTjJIIVcrITf9p9gJgmkcwq/wYyVEAGaaMCPl3f4M6MZyUpRjkuuBWCo+mdMOPDIYjxolMoNLJZvES8GU6CGUzjv+z3uLuvHNbxGcSkUE7aSfE8JVmLx4yHTlEFIhnix9p/c/uVOEtQELnSei1VYsQoLqaYUbErHPhz701kHW4Ojn2NGoXj11VcZNWoU5v3SNR8MbU32IQI0UhN5gz5SVLCNFXxMASdQwkZyKKSanVRQhEIZ5WzDQx0z+B3V7MJGLLN5IrK08QXPkkUBAzieWvY0WwjWMJu/sYVF7GAlhZzEaVzPZhZSxhZCBNjDerIZRIAmKtiORohPeIIM+jOVK4khHoHCc1zBOfyRBNIQKFiw4yHsHJpBfwQCjSAAfjxUNU9OE5lFIll8wIOgvQFAtnI2FpJwikJM4sCOhW0lmwIYxETm8w9SyOVN7mjeNplTQ785LJP0IPVWdmtvYRfZ+GQ5jWyN7GvxNWmR/8fE4ejPeu0vNFFOjriQdGUq2/Tn6C0uoUEZyWIaO7WU48PNDlZSzHKu4RUEAje1fMZTLOdDcihkJ6tYyL8jxwxiMrE4aaCSL3g2sv1qXsJKDL/gkU7J35UxcjKbsc1KPYCr+d9Oghzf7Bt9Jc+yStVYKpqApuaWJlK4ihQgRfEwQG291JAgwtE5DVo4aViD3ACEc2e8IV7ALOKIF4MJynr8VCMwYdd3Y8bKWr4knXzO4g+YgzZ0QnwdfJEawo6uD1Q+zgQuosa6nC3+bYywDWVW0kxS1ZQ2HWD3ff6OyW3okkX5QMqHLiWbXeUdtjE4dBwzPhQt/CntJgbZCjo4IsyBLARuavkH15BJf5LIoYodVBK+WZPoRSq9qWYnIzidDPoj0TFhIZ60Hl8rBaikmATSI7kXPNSxlPeop4IksokjmTFjR1OzVPJPbowcZyWWSVyGjkYC6aTSGxt7J+c6SonBGTnvv/l/9Gc8GfQjm8HUUkKIANtYgh8PQ5jKm9xOBv04j9spYgXf8Toz+SuxONnMQj7jqVbyJ5LFZc1RDS1IJKVsIpMBKKiRNeFPeYIE0nBTh79Z4UgUo4gROSSIIcSK1klcWmiZQPZNbAWwiW9ZyH9w75eRoCX09FBMfj5ZxVrtjqhtcRSQpIzEI3dTLRcyWP0jsaJ3l85bpn/OHv1dhqp/xiZSO2zbe7SHncsPzVp1QLrYqb2BhheNJpoIF3iTzQpjDDkkKWNxiL446HdIagy4tI1skU9EPucoF7BbfxuAAcr1xIhemHDQZ4yvzXFo0DezWX+cXsq5nK2fg5lwYaY6SnmX+1BQyGMsafThe96kkerIsb/ieWKIjzwrAGbzZKf8S46U8tiZ+8Erd7Nb35uhNk7kY6cXHrkTs4jDRhoNcgvl8nMSxUhiRC9SxAlYhDNKgXNTi0BElsj8eNnFWj7hcTIpoIzNFHIyfjyEaCnzLQCJgkoaeaiYGczkyJJqdyOA5la/xELvYgDDh+IIcMwoFHV1dTidTm4Ubx70ubw08DlPs4s19GMc21jCdK6jF4OJJZEgfhQUvLiwEsMeNrCAV+nPeBRUgvioo2wfM6toniiDWLDTi8EkkoUJC3489Cac3OZ7Uz26DOJhJ3ayqZGLccsiamVLCJkC6FhIoq9yGY1yC6XyEwrVu3HJdQhU7GRTMLQXZetj8MkK1mt/Rm8jpFPFzLW8yiKTK2q7lDpCKOgyRIn+AeUyXOgrlnxO4lz6MorFvEMsTubzD4ZxKpo6FgvJrNTCCVYGKNcTRwH1rKFOrqBWrgQ0nGSioGIjDhNmdrGm+dxOPNRjIYZ08slnNMOYHvHv8OHmTe6gnjLsxNFEOF+DhVSGqfd2OEFlDWmiz+q91iQ/XuZyRXOUiR5ZA+/PeGZw4yF5wFfo89mtv4Ns/h7s9ELFhpttkTbD1L9gFa3D5joiJJtQsSDEgc35WUOaKF3fdSe81tf00KBvZrt8HoEKKEiCCFQkGuliGhXyS5IYj04TfmpoYk/k+DQxmQa5hf7qb7CJ7jl0hqQXBQuKMO2zzU0T5YSkG7fcHl7yE+PYoP8VgPFDz6Z0vR0VGyYc2EUmFpLxyQrW6XczQLmBBCU6++VW7TlGyNHsYg1nsTebq2yu9tLy4qCj8xo3UU8Zl/FYq8ytR5PlqSv3Q0h6CdKAXXS/hgO0XpL04SZEACsxmLFFjZMug+zS3yJEA6fKn6MTookGdDTiSMGEFTMWlvMRRSxlBDPYzlJsOLAS25xd14aKGZ0QqfQhkWxiiEcjyEtcZygUR4BjRqF48cUXmTVrFrdY3z3wQfuwjR/wUI8fNztZzQlcQhZ7LRzdeRjoUgN0FGEmKBtplFtxyY1YhJNafSk2kYadbBrl1qhJZl+ylbNRMJMqTkQCZfqn1MmVCFTMxJGunISChSZZTgObAIkJB0KaqWc1KjbMxGEVafRVLkMSan6j9OGTVTTIzbjldvxUYcJBHPl42ImXcOiojSzsIos6GV7hTxNTqJdrCVATkTFZjMMjd+CjAju5mIQNpxhKKpMAwQr9twzkRDIYwDe8BEA/jmNbc7VPExYUVALNJtoUcpnB76KWlyQ6T3JJ5HOuciHpStvRIW0xLuTgPe5jDxtIbrYwbWIhwzmNKcw+pA/9oGzETxUV+nwa5EYsJJGr/hwH+YiDCFM8XDTomyjRP8a9zxJNCwo2MsVpOMUIrCSB0AnhwSt3k6iMQNdD7NTfIEQTVpGEVSSxSw8r+wliKKAjMBMn8nGKYdhEeqtr+GU1KjGARCUGIQR1+mqK9VfQaCJPmUOSGIuX3VTr31MlFzJSfYQgjSiYaZTbcMn1qMRQKb8iT5mDwEQINx65i0a5mThRQL1ci4UEbCKTXOUCzCL8cN+u/QMzcVTK/yEJp6t2kMwpXE0uQ7s0lkeTUnGs4Je1VOuLKJUfkiwmECfCTstBXGjSj44PBQs18gdiyMXFWvool3KafhKNzc8njSAKKhUUUU8ZdZQSJMBu1hoKxRHgmFEoEhMTqaurI4N+DOUU+jCCGBI6PHY98/mSv5PFQAo5iX6MY6mpqcNjuotLX0+CMgQIa+FNlOHTK3Cxjr7KbKrld4Twkql0Pa1uy9tHUDbgoxK/rKZK/w4320gUo9FkizOdgkQjhI8m9k1eJVCwEk8BZhIIUEOiGENA1tLIpqi1/xj64GUHAGPUZxFCoVZfwW79LQrVu1ih3UiOciF1ethK0Vu9hGlaIQt4lZV8wvncSRYFfMBDnMLVlLGV7/g3PtwE8aETYiK/YBThOhBhZ9R/sZ5vIssgvRhMP46jkGmRt8WWB3d7b2Iy9GlUGG1PLnlU6N+wS3+DBDGEgHRhEWFTr4odm0gjXgzCQd5hLS98MBYKr76HDfqDwN7lC4BUMYlEMRwvJSQyigDVeClDlz7ilH4oWIghFyEEUuqUyy9IFhOwiL2/Q11qKM2WFU0GcMtt1MrlBKglJN3kqhc1K1qCrdqz1Ms1JIihNMiNDFRvwiqT2C3fRwBB6UIKnQa5t1hYLH2JFb3RCRIrcvDJSirk10we9ks860e2sur4ZS2Ncit1cjk+WcFg9TZUEY6KaZJlrNPuIVVMJFWqDOUUPuUJGqjkGv4ZWR7pKkdSuegpi9Xhwi+r2aQ9xlDlzygdFJRz6RsI4cEpClFFuH/t+c94qOdFrjYUiiPAMaNQtHwpV4nn2cVaPufpZidAiMHJWM4lndbOPSECfKmsoFouQsGKJESs6EuaMvGQyLuvQnE4qNYX4ZMVaDQh0VGJwSzikBLK5ReECK9JjlafQhHm5rY+GuVWArIWVcSgYsUr91ArlxEvBkc8xIep92EVbRey2q29S4PchECQr/6SGrmEDHEaoLNe+ysZyqmkKscjpYYQKtWhF7Bgp4EK0ulHCD87Wcs0rmr1NhjEx3f8m1pK2EM4rXcKvRnJDAYykcWm9tdZl4aujvo8hyeJJ61bD3kpJXv0/yNIAxnKKQhMWElG6WJioqMFr15CvVxHiQxb++IYQB9lFhaRGLXM0EKFPp9UMSmiKLQQkl5q5GLSlZNwyx1s1h5lgHojDvq2ssxIqeOmiAp9PjEim3RxMl52sUP7Fz4qcJBHinICZfpnqMSQo5yHQ/SLuqZsThx1sFYfTfrwyxqsIpVGuYly+RVxYgAN+kZO4xdkM5AilvMhDwMdp37vKoYF49DTomC0LH8aCsXh55iJ8igoKGD+/PnEkMBATsSMlY8IlzVOIJ2vxTwq5XwSxUj6qb9GSomPCnZqr+PTawhSB82Frarl9+zUX6efcjWJyogj16kukprnp6oo+q0pRZnQbvt0OYUV2o1IQpHJr8X03JajYB7hMrhbtKdwyfVRyoQmfbjkBiwikRiyyVHPpVFuZ5P2MGu02wEo4UPs9CJFmUCSGAnACVo4PbbG7wjgxUosO1nDD/wfhZxEJv0j16innH/yO0CSSQHJ9EKik0gm6/iaeTzXHEEyps2x2J/pXEd8FxM0SSlZo92GToh85UqK9JewiQwSxQhylNa1GtqiVP+EEv0D4kQBfZRf4JeVhPDgk+VYRCKV+reYRCxeuZuRps5FC7RHZ8ZhX6SUlOofU8cKHOThFCOJU/Lbdf7UZBN2cvDKXcTSJ8r6EsKDvdmfwEoKFlLYpIUn4zj6YxVpzf4MWQhUfJTjltsIShc1/AAIfFQwTL2Pan0hAVlDnjoHh2jb6z987bYn+M6MQ62+gh3y1chnGxkkySZO4TqchP0I8hjNDbzR4XkOhoPNYNpVRaSr98OPiZax0mQT9FzBVYMucMwoFOXl5Vx22WVsEV5U7OQqFzKCh1GwsEK7AWQ4yYqlOQ3zSu0mNLwADFZuwyqSqJOrCXsYm3GIPCwkt3e5o5KYxBB0wQyrCBNjTE/TVSPUAPX6VtsC1LJdb13Iy0IKIRoJlzAK0ovzcCrRBaQ81LOAV7ETRwkb0dGopYSL9kuqZSeeFqVvEBP5mhcBKCFs8h7JDBpN4Qyf7Y1FpjiNMhmuqLqAd6lRh3RqCcIjd7JBux8zic3KJxTrr9JLOYdEMRJVdC62vkT/iFL9IwAa5WbWancQQy5xoj9uWUSSGE1vdSYClQ3a/SwNXc1o9ek2LQOdoSv3hCb9lGqfUscKEigkSRlDkhiFIlonxpJSskK7AZ0gCRTiowyBiaGmuyNtbCKVWrmMODkAs3Aw1HQXQeliu/YiCWI4MaIXXnYQxIWZBGr0JThEPiliPAmikCbKCEoXVpFEtnrWQfW/K+OQqh7P2aHT8ONFa3Y4bSlUd7TSliLSkZLR1WfEj4Hwy856EsQQVGFDk74jLdJPlmNGoaitrSU2NpYTYl7CzXaK9FcQqLhkODnTcPV+zDgjk8dI9RHK5BeU6O9RJb9Fk15q5TJspOOjAhNxjDQ9fCS7dNjozpp+UDZgIg67yGKsaS5eWYJOkAr9K2rlUqwkM0T9I02U49LXUSo/oFZbQi/lXCwinFyqNPQkFmxYiKGaXUC40FcRy8ljdORaVmK4gTcoZgUf8BAQjtKIJxVdPQmTOPDacC/1HBLlKDZo99FECcu03zDWNLfDY/yymg3a/QAUqrdjEgcfhpkpTqOUjyKf+yizSFVOiGqjyQCNcjNOMZx6uToSkXIoCcpGNmgPEqCaBDGUbHEWfqraVCYAGuRGdAKMUZ8LK5PaP/BThZQy6n4K5x3xYmoOVTaLBNKUKezR38Mh86hhCSCIF4MIUEOKmIBTCRePiiEbRM9lmewMAiUqrPpYpEXJ+Kkvo4SkNxKB1oKKHUcbS98Gh4cuKxTFxcVcccUVVFRUoKoqixcvZv369cyZMwe/389ll13GnXfeCcBXX33FLbfcwsyZM/nDH8IZFYUQ3HbbbfzlL38B4Oabb6awsJDZs2d3eF1VVbFYLAghiKMfBepv0WQTdXIlZpLZpj2Ph2KSxHE4RSFJYgxZymlkiFMIUk8IN5lMxyXXE5AuPNLIztYZVmm3tNpmIp40MZEUcQLVciFVciEq1ojzXI1cQo22hHQxjWzlTBRUKimmkDwu5WHsOGiklq95gQ95mJncRzp5bOB/zOM5BnIil/EY/+GPbGUxY9RnMXVh3TyGnMjf2UrHb75SSoK4gXCOg+4oExC2Co01zWWH9m+q5AJ26K9RpX9LkjIWnyzDJytQhI0EMYgM5RT6cfUhc+KUUrJNm0sDmyOVXBWsJIsxhGgkRuS0OqZOX029XIVPVpIrZrJBux+LSKSv+gvsIqtV+0Qxkhq5jDQmR/qRKEZhUZNw6euwyQwUrAxQrqc7/g89wY+tcNrhTjF/tGESMYw1zY0oufX6Wrbqz5ClnIVLX3/A47s7lxm0psu/7tmzZ3PvvfeyYcMG/ve//2G1Wrn22mv5z3/+w+bNm/nkk09Yuzbs1Pf888+zcOFCVq5cidsdfmg7HA5ef/11Ghsbuy28KuykKMeToBSQrpxEb+US6uRyKvSvI299ilAp0z9ng3Y/W7SnwmvyYgQD1Bu6ff2fAqPUJ4gl7G+hYGWk+ggjTQ+RrZ5FjnIeo9S/EZIekAoWkmminCTGMkS9jWQxjpD00CgE6eRjJw6dEN/wMntYz8+5h2Gcyhv8iRe4lY1KBbH0ZhPf8Sq/J4gfoMuTkBCCMeozpImplOgfhuVrh7XanWzUHiBNTCZdnHzwA7UffdRLGGuay1jTXPLVX2InC6cYxgD1twxQryVdOYk40XEyKE36aNK7nvUvKBvZEHqAZdpvqGc1NtLJV35FgXIjw9S/YMZJgjIkKl+ET1axNHQ12/S/kyzGkaxMYJd8g3TlJPqrv2lTmYCwT45TFFIr9yYWF0LgEH3JVs9iqOluhpj+iBDiiCkTx4ecPzplooUfU79c+nq2ac+zLnQvAVnX6eNCNLBVe5YKOR+nGMZG/YFOHdfduaynWbBgAWeddRZZWVkIIXjvvfci+4LBILfeeitDhw4lNjaWrKwsLrvsMkpLo+u91NbWcumllxIfH4/T6eTKK69sJe+aNWuYOHEiNpuNnJwcHnrooR7rQ5csFOvXr8dsNjNxYjhCIikpidLSUkKhEMOGhc2YM2fO5KOPPmLo0KHouo4QAlVVI+v4VquVSy+9lGeffZZbb721xzqSrIwFIE2ZFLV9eegGBAqD1FtxiL4HdW5dhnDL7dhFBmbRcajqocRbd3hXqHQZCvunAIPVP7XKYNnyNp+jnosugzTqW0hjMhnKNAQKK/WbSBUT0QnSJLLZJupZr/8dP16aRDoL5eXYyaJQuQcQuNmGXWShYqdBbiKewWi0HeZ7oLEQQiVX+TkBvYaV2k2MUB/B3EZ6b7vIQkqN3urFBzFCncMqUrqc3Apgs/YEXnYxRnmm3Tb7j0NA1rFaC1fkjaVvOExT9Insl1ISoPXDerP2GKniRPqovwDALMuxk02KMr5DGb1yD35ZRaIY3tluHRLaux9+TBNuZzjcz4iuUqevxiXXo9GEhg8bqeQo51Mjl1Ksv4KCmWQxvs2kfS1IqeOS63DJjTRRioVEEsRgLCQTxEUyE9gu/96hHD0xl/U0Ho+H4cOHc8UVV3DeeedF7fN6vaxYsYI77riD4cOHU1dXxw033MDZZ5/NsmV7lflLL72UsrIy5s2bRzAYZM6cOVx11VX8+9/htPINDQ2ceuqpTJs2jblz57J27VquuOIKnE4nV111Fd2lS3ff1q1bcTgcnHXWWZSUlHDBBRdw6qmnkp29dx00Ozub//3vfwDMmTOHCRMmcNFFFxEXFxdpc8MNNzB+/HhuuKH7VoKQ9BKisc3EOQCp4gQq5Nds1MJx94PUWxEonUqHHNBdbNIfxU/lfnvC6WPzlauwiXRiDtM68OH23t6j/x8pTKS3ctEBnQYVYSZfvTJq22D1jyjSzgb9fhCSAuVG2Cf/Rro8mdXan9gpX8cvq8lUTidLOQMzCQhM1Okr8MrdbV6vM2MhhEJ/9Rr2aB+wSruZGHJpYg+JYgxpyiSCsoGQ9NBf/c2BB+MIMEC9jjp9bavtmvRRqn9OpjKNqqLoJZomvSLyt4diArIG9lEohBAEZG0kc2oLJhw4xTCkDOeJNMs4/FQT0BqwqHsdF5tkKUHZQEDWExQunGI4icrIHuz1wfFTjWyA6KWPo3UcgtJNif4BAkGmcioqdir0ryiVn+DVS7ASVritpNFHvRRNNqFJPwFqwn5cIg4rYcf6Mv0zLMJJrnIhNjJaWb46E+XR3bmsoaF7KcLb4vTTT+f0009vc19CQgLz5s2L2vb0009z3HHHsWvXLnJzc9m4cSOfffYZS5cuZcyYsPP6U089xYwZM3jkkUfIysri9ddfJxAI8NJLL2GxWBgyZAirVq3iscceO/wKRSgU4ttvv2XVqlWkpaVx2mmnYTa3H4s/Y8YMZsyY0Wp7amoqZ555Ji+99FLXJd6PADWs1/7KCPVhzGKv0qLJJlZovwMghl542YOVNDZqD5KtnN2hQiGlZIf+L6rlQgCylZ/hk+XUyRXoBAlnq4ynSP8HEo1Y8jALB0HpxkQsu/V3COFlmPoXFGFCSo0gjViEs1t9PZxJa8L+KasZpv7loNb4pdRp1LeSopxAqjieCvlVqzaqsDHK9Fh47VOG38KLtJfpo87CLjJwyyIq+AqrlkGqGv2m3JWx6KWeTZIcRVC68ckydsk3qdXCWTxj6dOmL8HRgEnEtuo3QKX8hnL5Kb04u9U42EVGS6AMcaKAJGWv06tX7saMEytprR7CeeocyvUvKdU/wcMO0pmOwMJqeQumkINY0YcmWUqAWhLFKJpkOT5Zyh7ePaj04j3NsZbQqadpUSqOxDi0+DCEpAeXXI+Z+CirXL2+hjL9M7KVs4lXBkaOy1LOxCJTcMttgKSXcg7V+iI2hR6lka0IFNLESVhEIh59B265nSzlDAapt2ASMd2Suafmss6wv/JhtVqxWruv+LlcLoQQOJ1OABYtWoTT6YwoEwDTpk1DURSWLFnCueeey6JFi5g0aRIWy15n7OnTp/Pggw9SV1dHYmLi/pfpEl1SKLKzsxkzZgw5OeEH8IwZM/B6vZSUlETalJSUkJXV9nrrvtx8881MmzatXY1sf5YtW4bD4aD36PB6eNCnULreTr/CFGLWzyU1z09MYvRaeUrdA+zYVsKAodnsWaeQOqQSq91Mhf4lDrEAC/GUlpRRWruZrOwM1OLT6TfGRIPcgpABxombqJQL2L79W5KZQGHsnbiqA/QdZkMlHEYYkLWYhZPSdTFYkmqp9+6hUi6gV342Nj5HEWaaZAkWdGqXj2JAv4G4Sq3EJIVwZgaj5G3pU8tDIdynaNNfS5x5S5usIU2YbdFRAvVlZry1JpxZQaqKrJEx25eWNxmzXcdbayJrSPTSQpBGNq7xY07ehsmXiSJspOb5W51n5/JYUvP81Jeao/qko5EiM7D4Nbat2cO4oWeib6TNPiXX5VG8JZ74IWuI3XAh+YUJ+K1rQDYwTFxJvVxDsKyJmPrJkT6ZbXqrfnXcp0QgkdL1AxiQdAIebwNNcjf5/foh9ivX3V6fuvI9eetMPfo9qbYAZdWbiStcwwgxhbHiONTmsGizTScmKUSwSSEGB2P7hJf/cpQLUPAQwMVHSx4gr18uVSUOhqVegTNz77VCePE2+Vi35nuGDx2DZeP/IyWvCVviJMr0L5pTIFvx1+VStj1En0Irq9dWcsqwm4ixx2HCGhnDnrj3AErX2yN9Ag5473nq1FbXCvoUWO3EPNRFcG0Cpn5u1MTo71KrMxPa5oi0MQ91oez3PYVKbei1FtTsJkLbHFjHtl4yCm4PW4qEXUOvtWApbP0GG1gXj5IUQDaFk3WZ81uPjX9pIqZ+brQSO0pSAFNWdAik7lMicu7fp96KNzJWh+IZkTaklnq5Gj1S6AvWrV1PclIK/iYdN9so7DcJn9wYqW8TK3JZ+sM79OvXj8SyvjiSA5Hfk1vuIAYXdv9EytbFIwa/R9laDyP6nUZW8hUAKIQnPm/diZRvl+QUygP3KT0A21t1J4qemsvE0iSEve1pVDSFgKLINVq46667uPvuuzsW8AD4fD5uvfVWLr744kjSrPLyctLSovPumEwmkpKSKC8vj7Tp2zd66T89PT2y77AqFGPHjqWyspK6ujoSEhJYsGABv/71r/nwww9Zs2YNQ4YM4Y033uCFF1444LlycnI44YQTeOeddxgxYsQB248ZM4b4+Hh2Ll8Ztb1FGw/f/K21vgTFScV6MAuo3xCPX1azXluPgyaSlbEU6R8AULNtE2PUC1m7dAtb9X+iYiXIUnpxHvmmsCnf2wBmYM/yfa+w1+QcKkvFQiq9GIlcISmXa9mqz4VIWOBSdmxxUKjcTtDnxFXadshee33KGtIU+ZG3tOnobaSlbYfVB5ufjfu3kdKOrtnYUhKO4OitXszO5W3fLi3XcZVa9utTISHpQaBSvM5DjhJo93tKZARb1m7Gz/1sWA12skhSRiPFGFZo/0JnKf2VFIJF4ayaLZN6V/rUQljGFMyksGt5m0066NNeDnTv7dvmYL6ncu0rdsu3iGcQDc25OCxLkyhUL4ykH84a0kTQp0TJWF8zlq36s2wSDdjJpEmWkKtchLI9iUb5f636tC70KE2UUiB+R9XaIlKUeqqLnGwN/ZN6VqFgQSLor/yabKU/TRvc9FEHU7+hL/Vd7FMUnfqeWtp0fO/FJmptnqfUVM/xa50AhLY52l2ZD65NiPq/LULbwj44+1a5bY/22mgle+8Df23b91XLdbQSe1T7tuRt6VN4ySP2kDwjZK1OuZzHhh+K6KX8LMpBN5/ToXmVLR1oWhEONffKUoRQ8JPEKHUS6g4rGlBRUsW2PVuol2uwkUYv5Vw8hFin/YGUdccTJ/LwFg9g947W46cKKG0O3uioTzU72h7XfenJuexA7N69OypTZnetE8FgkAsvvBApJc8991x3xetRuqRQmEwm7rvvPiZNmoSUklNPPZUzzzyTlJQULr74Ynw+H7NmzWLo0M4V1rn11lv55z//eVCCt4VfVuOXNcQr7Zc3t4oURpn2ltk24WCL/jSpYiLrtHuIFwPR8UXC7BL2S9LUWYQQOMUwxoinWK89SFNz/gUNN8X6a+SLK7tstttfIz+UCKEwzBQO7V0VugWpaeFEQCKHWNEHO9kHXAqp1ZYTK3pToP6WOn01JfrH5Kjnttm2j+kSGuQWNOklVvSNqg8xQn2AnfqbbNWfYQh3EKNkH9axOFKUyy8BaGAjQ9TbWK/9lTgxgJXaHxilPoYiLG2Og1MZxijxZDg0Wij49SpK9PfRCBAvCqjSvydVOT7SPkUcT5X8nhL5IW62kcrxaDJAiEZi6Uuc6Ee9XEesyKVRbiGke0HhoJ2cDwUd3Q8t/gVHm4NmeyGfXZVz3/P09O/Cpa+nXM4jTgykn9K5EGeziCdBtE4YFpIeNmj3k6WcQW/l4r1LwNJEghhCrVzOSFPPRRx0RE/PZR0RHx/fY6m3W5SJnTt38vXXX0edNyMjg8rKaH+/UChEbW0tGRkZkTYVFRVRbVo+t7TpDl12CW7LcWT8+PGsX3/guF+A6urqyN8FBQVoWs/lSFWJwS1/wCqTO1zT9ckq3HI71XIRjXJzZHu+cjUClVq5AisZ5CmXYVPaTkncWYRQGaj+lpXa3vLIDaxnjfYnMsWZpIjxmJWjO9FOqjgRu8gmVvTGI3dQrS+miRIyxXQcIr/dmha75FsEZT1DuIN4MSjik9Ie8WJAm5mVVWEnRmRTI2GH/hqDRM9FBx3N9FZmskN/gxB17NTeIE+5kiL9H2QpZ7abkKoFVViIFwNZE7odP9VkiRmUyk/IYDqb9IeaQ0YlTbKEcjkPMwlkKtOxiVlYRALl2pc4RD7xogC3LCJVOREvpcSJAhSTifLQl2jC1+kMokcDR5Ni0VH+iO9N9Z2W8VDlodBlkFL9YzSayFd+3amkcgeiSH+J/upviBP999sTTo4WogFdBg54b/cU3Z3LDjctysTWrVuZP38+ycnRmZ4nTJhAfX09y5cvZ/TosO/U119/ja7rjBs3LtLmtttuIxgMRnxG5s2bR0FBQbeXO+AYypTZGUwihiy1bceZcOXD7WzRnyTitQYkMoosdQYxohea9NEotzFCfahHkw2ZhIMx6jPUa5vYxlNhefCxR77NHvk2I8SDRzQc9UBkq2dH/raKFJIYQ0h6qNC/pkJ+TZMsJVWZhIIFC04SxBAUYUYlliD1NOmV7BZvkakcnFMTQIZyClaZxjb5HMu035Asr0bK4Ye1sufhpFFuo0h/CUF4vd3NduJkf8wk4pbb8MidnYpUihV5pMmT2S3fBMxskuE3wF3am/ioIEOcQr7yK2JFn0gkjy41dst3iWcgOep5JBAudheSHqr1xYBOjMjFLYsISTeSECn7WDyORqTUcFMMwFdqDCdrB2d5PFo4VIqEJv1Uy++p0X/AQT+ylfMwie47EAZkHWacbSgT0CA3YMJBX+VyBOFJbqf2JunKSe3WmPkx4na72bZtW+RzcXExq1atIikpiczMTC644AJWrFjBRx99hKZpEb+IpKQkLBYLgwYN4rTTTuNXv/oVc+fOJRgMct111zFz5syIL8gll1zCPffcw5VXXsmtt97KunXreOKJJ3j88cd7pA8/KoVif6SUePUSvOxgh/xXZHsf5TJ8eiVuikhXTiJG9ALCUQdOUXhIZBFCJdE0hPTQqVTwBSYSCTUvIqvHYCpgk4iN1F+o1ZdHnKdq5TI0fKSI8eQq57FVfw6/UkaeuDIqCudgSFSHUyjvZJ12Ly65gWXaXOLFQArUG7vbnaOGem0dHooolZ8AkMoUqvgGgDL5GQ7y6atczjbtBbKUGfSm42WHgGygljebP4WtgWaS8FFBH3EZTZTgZQ9l+uf4ZBl+qokhF9Cwk8XO0FtkKadjVhyE8CKEIEmMjfhwQNiL3yerjpqHvy41/FQQkHVIdAQKOkEcIh+BCT9VfKGuZLJWgJW9y44+3DTRQCIHdio/1LRnpTjUmTGr5AJ26+9gwoGHYuykY9GTcIg8VGGLhHF3NTJKYG6OkNuLLkNUyv/hkusw4YgqdKgToEh7CQ/FFKp3tptY7cfEsmXLmDp1auTz738fTit++eWXc/fdd/PBB2F/v/19DufPn8+UKVMAeP3117nuuus4+eSTURSF888/nyeffDLSNiEhgS+++IJrr72W0aNHk5KSwp133tkjIaPwI1Uo/LKaPdr71LIUgCxxFoXqndjIpImSsAJxhDIAO5XBVOhfEKKOWPLwUMRy7VosJDFM/WuHb9z1ZUdnuex9QxOlruOWxWiyCSsZSEJkitN6LEtiS82I3aVhN+4GuYkt2lPkKBdgF5k9co0jyVb5NAD54ipUYaNU/xQ72c3/sijhPSwikT7qJazX/kJG6d3s6xis60F26f+Hn0pCuCM5VFRicNAXnRCpyons1t+mSL5IijgeO1n0U36NQKWRrVhkIhbhRCeErgeplcuwaInoIkCiGB6lTEDYZ6NGX4ZPluNUur/mfDDUlGoUa6+RKEYgULGJNBwiv80lGVVm0yA38bnyLQ1yAwliCAIzhXoiNeymABsOktq4Ssccqsm+K+etLzMTkh78VBOSHqwiJSoj6oHIUE4hXZzEMu1aAHbo/6KXch6l2idkKCezTQ8njDpQfZz9MQsHGp5IiGlL1VuQ5ClzMBHtFNpXnQWElcOeKiF/tDNlypQOk2Z1JqFWUlJSJIlVewwbNoxvv/22y/J1hmNaofDJSiwkEsSFhWRcci2N+nbK+ZxYepMqJtNLOSdq/S+GXkdQ4nBuABU7Gk3kiPPYKd+kid0EqGW19ieGqH9q903eW3v0f10mHJTLzyjXPmOAciNpYgqNcgvxYuABj+0M4Ux648iu/zlZJgdNspwS/QOKtJcZYvpTj1zjSGIilhAezEoCDvLwKrux4GSX/ja1/ECCKERKSYzoRbqYxrLqB4nRhpGnhkvPl8iPqOMHkjkBPxX0Vmc2JwoTWMTeNdJkZSyV2jekqVOirh/PXj8WBTOoduwyCzPx4RwX7eCjnDgxoMfHo7PU1dajYCJG9IrqZ1sIoZIgwss4SXIMgnBa8FIFoA/f6ZsYp+ce0FLR0wrE/kW/unp+XQbZWvU5MQzBSioxohc+KqjX16DhJ0mM6dQSoRAqo9Qn8VOJSgxWkYSdTLbqz5AiJuCnFl0G2/Wdag8raXjZTSy5LNN+g1MMJ12chLkNB84WFKG22lanr2KbPpfBym3EKkdnDpmfKkf/DNWMlBJVVTHrqUg0VOw0ETa/pYkp5CjnYxUpJKhDyRFtRxIcDQghGKk+xhbtKWpZSaHpNnaH3qOczwhSR71cRaqY2OaxLTHjRzNxSj5OOYygdKMTpEYuwUQs8fSMQqEKO3nqHFKy/ZRt96LhpVFuQaKhS63NB9Cxgi5DhJrzORRr/0TFho9y8pRfEaIRO72IIRc/1ZGUxZ7sBnZs2xMuBKb/nXq5ilHKUzSwgVh6dRiJYRHJhGTTAR3u3HoRsSI3nHUTEKiYhRMFMxYScbMdi0xCw0O9XEcQV6sKqweDT1YgUNEJYCMd0c53G5RuTJlbyCm+oMuTXFv3S7wykMVswC6CWERC1NJDd5QIXYaok6tQsaBgJVb0Qe0B/4QWBCq9emURKN5bbdNOFnaRRUC6aJSbO63Yq8IS9fIVTruvYCcHPzW06T19AJKV46jTV+EVe0gTU+mtXtTlcwAkKiMYzJ8I4oLmQoB+WU2x9k9iRR4B6Tqo8xp0HyEPVWLyHqKhoYGEhARcLhcLFizgt2f/HzbScKhHT8had9FliDXa7QSbo/qzxc+IVwpwiGO3DO9m7W80yE0ADFcf6HaW0H3RpJ89+nsRs66HcOXYrpphj0ZK9I/QpJckZSyx9EEIgSYDbNQeoIlwIaAUjsfDLpxiGGXyExzkI9HxNDsd9lYuwa/XkGNqX7EOyDpq9eWE8JKqnIhVtG/ib9SKkSJEvBJ2qNNkAD+V6ATQZBMCU1Sodr2+Fh0/ScqY9k7ZIX5Zi0cWYxPpSHRUrPhkJQHqsZGGIiyEZCMSiSrsWHDilzX4KCddmXrgC3SSGn1J87q/wCbS0KQPu8jucKw06cPLbiwkYyEhSgmq0ZeRKIajCDO6DOBmB5r0kqiM6BF56/SVxIvB7SoptfpKnGLIQUVR7NBeJ1GMpEz/lARlKFZSSepCynW/XkO5/jU1fE+GcgoZYnqPKv/haUzikuuo0VdQy2JcLlePhWvuT8u8VPP3McS3k9iqoSlE8q+XHVI5jjaOGQsFwJlnnsm9asmBGx5jCJSIMgFQIt+nRAMb6QxRb4s8AHqP9nScKOgookC9ESn1sPm+i86YLn0DZfIzFMwEpIsQbiw4UbCiCDMSnYljT6doucpWLaxEWEjCpW3GpnQcMny0k62c2WpbizLhIJ9kMR6P3EEMWThEH04eO4slPyxioPp7GuUWvOwhRvbFT01kvXpfdBmiRP+QRGUE6cpJANTIH3BJHxKdJDE6KuJIl0GCojbKCS/q7bWNF1WnMhSfrKROX41AEKIJCwnEijzUDiazBn0TQdwEqCVTOTVqn02kN1egVJBoOJTwC0VIummigsFjk9mzrGeXXJLEWIRQ0GUAnRAmJQaXvpEAdTjIQ8cf8dFwyx0EpQsVa9giQD2NcismGbb+qMKOjg8NLwoJKMJCPAPwsJP6SL2W8GBKQqjY28yn45V7mp1NNQQmzNJJjJJFo9wKCPLGhNi5vG2FwimGUC/XkiRGt7m/IzxyB7niQirFNySLsezS3yaJzisUVfp3VPIVg5U/EqscODqpq4Tv83DunzjRn1ptcY9fw+DAHFMKxY8VIRTGmuZSpS9ih7430ZePCpZrv2WAcj0ATdKKS2+dgvhQEKCeGNGrU6GJ7SGEgpnOKxNuWcwm7REkWrhQFRINLxKJhx0AjFGeRQgFkyhno3Y3fZRZVOjzaWIPW+TjoMEo9W/HVH6EAzFEvR1N+vCJSgJ6DQ1sIEgjNfpScriYAvUGFGEmQQwhXg6mkW2YpINauQIL8VGheoow4VQKCelepACPKMIphiKlxEMx9fo6pNCxEFYq3LKILOWsLr9N2kRalDOgJn3s0d8lRzm33TfkAC6SxXFI2k7O1JZvhEk4iMOBCU+7SyIHS4sjsSIskSimBGUQTbIcl1xLg74VC8lYlQSsIpVEZW/FVTPxUdV5Q7KJGNG7lUIVK3q3qZT5ZBX1+hrC3uMtRmSBVaREHF/d+k6CuHDJOuJE/+Z7vnUK7RYUYcFKKrX6SlpCfzsTmRN++1fQRQAhTezS/0udXEm1PvSA1WgBGvWteNjNGPW5H22Yt0EYQ6E4ikhVJpAixlGmf06J/IiWMD8FG3FKPnbhIUE5fBYKtyymXl+DjobSnA9BwQpIdILEitweyZ+xMnQLIcK1D+JEAWliInv097GKZALUMki9hRhyCckmYF8P8XCWxyR1FBp+vHIPW/WnWan9njGmZ7st19GCEAortXAIWaqYiIk4cpWZJCrDSRIeGvfxGxBCEC/6E6/0R0qNOrm61YRlIZF61lMnl+MQ+TRRToO+hTRlIkHFhV9WoxP2rldlDB65AwuJ4VBCuQOv3IVFJGISccTRv1OThIIFs0hoV5mQUgfCJaJbcm8crVhJook9pKrHhyvW4kXB2qZFqIWuJoayidQOJ/uW0NhEZRRB6tEJROoLdUSsyCVW5CKlpFp+j5VkJBK33IqGD7vIilIEpZSUyU9xikI0/NTJFeQqF5GtnEWTrOjgSmFCMlxLZoB6raFM/AQwFIqjDCEUMpXTqNK+w0QsXnYR1BuPSJirQ/SNTEbhB75Ax49AQWDGww48+k5UEYODvIMKDZVSEi/6UyuXkyFOJU70I45BBBU3u/Q3gHDkiCJMrNb+QH/lt9hJI0FkEEd/turP4pLRJb4leqvy3Mc6/ZXraJSbKZfhEsYJouPETFJqVOrfomCmSl+IT6/CJtIQQiUkG3Aqw7CJcFGgJn0PFhLwshMzzsibtlfuQUfHSgohGvHJCmJEr+YQQD8SLRyGTS/q9FXEit5RVgQpJT7KqNYXUS7n0U+5ul15hVBw0I86fRUWkUgMubjZTkDWYRGJ2Ejvdh6T7uKWRVhJCy/BiRTsIhO7yESXIZoopU6uJEmMOiyyCBRU7DTKLZhELDr1ePU9QOcsikIIkhhFvVyLQCFODKCJkqjCXwCl8mMEgizlTALUIVAIyHpsIhO70n4UTEuCrFjRl+SD9KUxOPYwFIqjECEECia87KK3uIQkdcSRFikyOe/7FuQgrHCEpJsq+R3xDOp0cqOgdLNauyVi3s4RPyddmYqfKoLUky6mYBdZbNGeYK12JwBJjGOrHk7Scr54hIGmMwAo0T6iSZaTrk5mm/YCaWLij0qZAHAqhTgppJc8l/XaX6jQvyZTnd5u+136W6QqJyLR0fHjphiNeBwijwBm6vS12EUlOiHq9bWkionEKX2RUtKkVxCUjYREI8mm8ARpISGiXJqJo1ZfiYkYKuQ3SKlRwyIA+orZOEQ+a/U7iBcDsZAcSbl+oNofNpGKlWQ2ao8QpIEkMQqrSKVG/wGdAHnq7O4P5EHilSUomPFTjSSIg/zIPkWYiCUXiYZfVh8WHx4hBAkMxiU34JNVqFgJ0YjspEIBYb+ORBFWHqWUBGQ9ScpehcilbyAo6+mtXIoQAr+sRqJTLj/HIfMix+6LJn1UyG9IEIMIShcOpU+3+2pw7GAoFEcpvZRz2an/h+R91iiP1pBRk3CQykTq5EoCsoZ4pePQtM2hJ2lgA05GkK9cST3rmt+eFVRpp0ZfRgg3brYj2VvrpZYlkb8rt+81n2arex0ZD1dxoSOFEAoDlT+wUv8dcbKAqqK286pki7Op0L4iQR2KJpvoo16CEAqa9LFRfwCAGNmXBFFAljKDIC5qtZV45A4SxWg8FJEqTmxXDl1qNLIVl1xHjnI+DpnHbvkWxfIV8kS4Om9ANtBAONKnUL3zgMtjLn0DW/QnSRETyOOXCAS1/IBLrsVGeqSdlJIANfiaTe5xYsAh+23oUsNHOY1yK+nKlA7bBqUL62HIFhqSHtyymBCNJIkxUaGy1UXt1VNtG0360PDjkTvCtXSaqdGXUiuXkqdcgRCCkO6nTl9DkhhLupiGTUTXkajQ51OtL6KJchLEQLKU04hVe9750uDoxlAojlI0/OQo53XoFX80EU7JPKq5Yqi/zdA1TTbhkpsI4SZDTCdeDKCBTcSJfMwinj3aB1TL76MiXlqIFwOxkkKCKCRRGYEiuvbg/DHRMray3WLchGupKDaspOBlF35qsJGKThAT8eQo51Gsv4JX7kIiSVJGo2JFJ4BJxJIhplGhz0dgIl2d3Or8SWIUy/VrSOFEkpWxAMTJ/mzVnqVWLsVOFjT7QsSSR1A2Yu9gCT0kvWzRn2SYch9WJYk9oQ8o4xOQUKD8DtM+zr01cjGxog/xYjASjUa5GV0HRQ7och6KjmiSZVTr35OqTCJO9Dtg+3gxqNnHJIREIgkSK/ocMNFWZ3DpG5q/bwWBCGf37KZPgpQ61XIRDpGHTaRiEo5mn4lPCMoG8pVfR5xxBRCigaCsp4r/kSXOJCjLqdC+xstOPOykl3IeGeIUw1fiJ4yhUByluOQ6UkV0ciCzXae5/MdRSyw5eNlFHOHIAq8sISjrgbCSlChGkGSKDjcLSBdLQ+H19WQxgd7KTHbpb9AgN2MXmfRSzo3UWwHYoj3DSNulgPNwdOmwE5QuKvRv8FGJtTkFtE2koxNExY4ug2SIU4gT/TDbA5F7okFuwSt3YSMdh8ijUS+ihhVkKCexW3+bJDGGJDGGeAbRIDcyVPyFtfIOPLIYXfPT2zQTqYUnaJtyPBnqyZSEPqVGX4JKLAKBThCBikfuxskI+pp+EZHbLjLC4cIEI/4ZAH5ZQ6X+P6pC35GsHEe8GNhq4lexEUd/tusvMli5hUx1OgG9FptIbxU+Gc7aGU6zLgiXvo6P8VFctxKzjEeiRXJUxIl8Dha7yMQh8ju9jKcKK/Fir6xS6jTIjYRwd7n2xb6ELTL1JIjBB8zn0pVnhBAKJhmHQMUustBlkBL9IxRM5CozoxSDgKhDiiB9lcsJ4KJE/4AaGQ7NdFDAGPXZH90yo0HXMRSKoxSv3INDiU5sdSyk3nbLYmJFHwCCsqFTpuIi7UUGKL8lQdnraNhHuWxv3ZX9GKBeS6Cu7dDCHwMbtYeJEwX0Vi4ihAeJjl9WIVAI4Q3n9iCBen0N7mqdUMiMqtgp1T8lTTkRl1xHlfyONGUy8aKA7fo/QMIu+SYW1Um+aQ7V+iLqWM5Y9Tm2hZ6nkm+oDH1DOtNRMFEWmodNScWixJEghkVFKQSlm536GxSoN7SSva2kT1aRTI56Hg36Vsr0j6kVy0kSo9Hwo2JBoBInBpCtnkO5Pi+cFVdY6aNcyhb9adxaEf2UX0eqobbgk5X4ZCUJYjBNdRaSxFgkWqSdX9ZSrX/fqhKqLkM0yI3sdTJW94ksEQgEEg0bGXjlbhIZcVDfoxAKCWII9foaAtLVXJNibxSLWSS0m85cl0EkIQK48MrdYX+UTiSH6+wzwi2LqdQWUssPSAI4xXB0/KSIE1ql6HbrO9ioP4CVNPyyBpNwEKIREwk46E++MttQJgwAQ6E4aokRvSKZAVvIGtJ0VCe20mUQDzvRZThe3SQcpInW5vIWpJS49PU0spVGfStjlb2ZLoUQHdZdOdrHojtIICDrcctiBApOZSgxIrvNtr2Heli3pJoa+T0QIkkZTRJ7Exc1yVLq5ArSOIn+ygz26O/gZBhpyhRK9A/ZpD2OIiyMVp7BrW2nmDdwMghVWAlJX9iHReiRZSyXvhF/cwpu0z5Vcv2ymkr9f83ZPBVCsoF05RQSxbBIqGi80p84cQObtMeJETnhZQwRzjVSoX1DvDKQGHqxS/svueqFKMLMQPV3LA/dyBrtDhLEYNKUSQA06JsJES5+VS6/ZOyQMexZnoTY55FmFUl4pJWAdGFp9t9w6zupkYtIEScQI7LxUdnmpB6QddToS4lnUHe+SiBcPK0FKfXmpQuBn5rmpFYSiY5JONCkF1BQMCGEGTPxkSWlztDR78ItizERg0fuwitLaKKEQerNxIpcQtKDSbR9XIX8KvJ3g9xMvb6aAvWGDmtwGPw0MRSKoxQFCz5Z3qVKgUcaRZjJYBoCU4frqC5tI1vkE5HPVlJRjFsxQq5yAU2U4hRDqZILOsxvUCkXUCq2Ei8GkqO0TrVdoy/DTBJB6nAovSmQv6NSfsMm7TEUTPRVZ1Oiv88m7SEyldPJF7Oo01egShuqYiWg+6nSv8cl16MTQEElVvQnQE0kN0aCKESgkqmcTi/OQwgR8T+olgtRMCNQw/VWCBAjcmiilCZZjlWmUidXYyONIHXEiF64ZREV8ivSmBTOKCkK8MidVMuFOGQ+irSiCkskIsFKMn5ZQp2+s5XPQqIYSa1cjpQhhFSb80VAo9hEkyyJJJ8Kh0VDg9yITgiziCND6Xl/ACEURHOSLDsZEWVGSh0NLybF0dHhBySEh2Lt/3CKQhKbU2PrMki9XItVpOCTlTjIp1zOo0C9IaJEtKdMAKSLk6mVS/FTSbZyFr3E2d2S0eDHi/EUP0oJ0sARq7HeDTpyitNlkD36e7hlEQKVvsrlJIqRPepIdzg41DkuAtRiJZUQXqyktjupletf0g8bA5TrqZbfs0d/H7OII0uZsY+sklQxodnEH7b8pIupJDGGEvkh27TnSFGOp0FuZps+lzQxmRq5jCxxOoliOGu4rTnlNVhJx09Fc5rnML2VSyJWg32xi0xy1POBFvO9bF5MUCIZLYWuotFEkhxNUNThVIYhpY5D7ccq7WZQIENMw0Ya9aymjzKLZDEWRYm+X0wilhiRTaISS42+hCTGRr4fIRSSxVg0GWCn/iYWEU+QRlTdhkmJwyyTqZOr0Akg0UkQg3okWVtXEUKJsvh0FSl1yuWX2GQ4k26l/BZFtzTX01HIEmegYKaCLZTpn5OtnNmhErEvjWyJJFSrlgs7jP4x+Glz7M1YPxHylNlUyQVHWowewyerWK5dT4X8Cg/F9FEuI1k57phTJnQZolYuA8IP8aDeSJNegS57JupESp1d+n+JEdnUyCURf5S2qNYXE89gSvWPKdU/xi+rSBCFUW0sIp4y+QWW/XwbzEocfdRLGKBez279/5AEGareSy/lHBTMlMhP8FEZSTmdwemkiykAqMQy1jSXsaa5bSoT+6MIM6qwoAhzVHrseKWAJr0cF6upk2up0r9jt/42JdoH5CoXkqFMA8I1NQCsIvWA94tTjKROrsYtiyLbQtLNHv0d0pUpxIpcEhmKlRRUrNTKpVhIIlk5jhRl/BFRJrqDlJKd2pts0Z9EEiJNTKFaLqRBbsTDTiwkUyn/h4ci/FSzW3+bfuqvopZhDoRAwSH64hB9CMjaQ9eZnzgLFizgrLPOIisrCyEE7733XtR+KSV33nknmZmZ2O12pk2bxtatW6Pa1NbWcumllxIfH4/T6eTKK6/E7XZHtVmzZg0TJ07EZrORk5PDQw/1XKi9oVAcpZhELCZiWRq6mvWh+5FSO/BBRzFrtTsifzvFCFKUcUdQmoNHESaSleMA8MidrNb/SJX+HQHpokHfjC4DBzhDx8jmug0V+nxMxNJemWiP3IWOH4mOQGW46T4GmK6Lqh8B4cm4n/Jr8pQ5kW1V+rfs0d6jXP+SDdpDSIJkKz/DJtJQhZ0h6h/R8bJOuxsf4VwP5XyKKsNvtBqeyBJBd7EqSeSqF5LLeSSLCaQqk2hkO6liYqSNTaTRSzmfJlmCX9ZQr6+hXl+DJn2tzhdeChmJlWTq9JXU6+sQmHCK4VhEIk4xApPiIEbNIlEZSbIyGj9VUQrIsYRExy23YSeLNDEVjSbSxTRGqA+QpcwgUYxAx0e9XItXLyFHuYDt2kud+v4Cso5NoUep11cTK/qwR38/UlDOoOfxeDwMHz6cZ555ps39Dz30EE8++SRz585lyZIlxMbGMn36dHy+vb+DSy+9lPXr1zNv3jw++ugjFixYwFVXXRXZ39DQwKmnnkrv3r1Zvnw5Dz/8MHfffTfPP/98j/ThmCpfHh8fz3Hmvx9pkQ4bugyyXAsXBhujPofFLgn6jk0dcHnoRnTCN/4o5QlUpXuJiMw2/agaC10G2KI9Qy/lnEglzIOlQv8al9yICQdW0shSTkOIcA0TiU61XEi5Po989Vc47b0I+hSklIRwN1dmTaSJUvyyBqtIxSfLKNfnkaWcQTxD2KY/h5c9pIgJVMgv6a9ch1PZa9mQUrJZ+xuNbMWMgyANqMQDEgU7QSpJE1PopZzb7LzpjlSCDR+vAYIQXswi2ozvlzVoePHplSjCQqNeTKo4AZu6N1FSpb6AOrmKZHEcySKseFbL73Hpm0hXJ+MgD4mGW25v9uuwkBwzIOp+kFLSIDcQoB4pNXQZwqokE8KNQ/RtjpwYhEtuJKg3ItHJMkVXOD1W0KSPXfp/CVCPsDUQajLjoZih6r2YZDw79dfwUUkT5YwxPUW1vogAdc2F2LSoEN8WVoVuIY4C3Gynv3otGk00ys1kKWccgR52DU02sUL73TFdvlwIwbvvvss555wDhO/nrKwsbrrpJm6++WYAXC4X6enpvPLKK8ycOZONGzcyePBgli5dypgx4XTnn332GTNmzGDPnj1kZWXx3HPPcdttt1FeXo7FErY+/r//9/9477332LRp00GOxl4MH4qjGEWYGab+hc1aON10TFIIV+mxkehqfwart7BOuxeg28oEHH1joQgL+eqVaLR+a+4qcaIAFTsmYtmqP0tIr6dJlqI0V1C1kcpQ9V6C1NOY8Dm7PEVIQphJwEwcTZRiIx2JpF5fR4zIIk2Zwnb9BQYo19NH/QUClTLtC5LEmChlAsIPs4Gm37FH+4Ay+QmJYiSqjMXNLhRUdOKolN9Qp60iXTmJSv1/2EUGDtEfKylUyW/RpQ8PO+mtXIKFvU6SFpGEW+7CQR9ilGzs9MItt2Jjr0KRpkwiRZ5AufycrfrTgEJA1hAn+kcSTAkU4kU4I2tA1qE5N+Atc0bCjN1swyYySRBDgPCSmwUnoKAIlUa5lSp9ITEiF5OIARGOHGmrZPjRjips5CoX0ii3QNJKdpfsIFVMwoITRbGQr/yKHdrreOVuAJLFeDZpj5Jl2utr45bFxNIbIZTmMvIN2EQaucrPMYt4dmpvdinaxGAvDQ0NUZ+tVitWa9eegcXFxZSXlzNt2rTItoSEBMaNG8eiRYuYOXMmixYtwul0RpQJgGnTpqEoCkuWLOHcc89l0aJFTJo0KaJMAEyfPp0HH3yQuro6EhO7l4TNUCiOcqwihXRlKjv1fxPjvfBIi3PQVOnf9+j5gk1Hj3WiBbOIx0z334hiRHYkTHQAv2WL/iQZYno4vA8vdpHJdv15dEIU+M9kgHp6u+dy6RuJE/0RCKpZhFWkRRI1KcJEjnJZu8f2Us8mTU5ip/Ym1XxHGlMRmIEQMQwlRzkfN9sZqP4eC0ns1t6jgYU0splC5Q526m+RKk5s5cAakLXEqOH+WZVEpOxLmf4FmcpeC4EiVLLEDDqDRSRiaYrFpc9HKhoeuZM40T8qJ8b+yalU7KTtlwG0Qd9MeWg+qrCRqk7o1LWPFhQsVMmFxDdZKFTvaDXmSWIcLrkOXQbxyXKCuCL7GuU2SrSPULEToJoALkaoD2EW8XhlCZtCj+KjglRO2P+yP3nqVvcmZG3br6fRHwSWkZMTndTsrrvu4u677+7SdcrLywFIT4+2JqWnp0f2lZeXk5YWHRVoMplISkqKatO3b99W52jZZygUPwHSlalsC/2dMv0LrHIkNjKPqfS2AVlHhfwSgCx+doSlObaokt8xVP0zHrkDjSb8spIGuYleynnYRCp2EcLbwfEhPIAgQB0SDa++C5sanlxz1QsOeH2LcJKpTkfogkr5DTbSGajcjLk5vNFJ2LlPSkkFnwOQJc5EFTGRyAmxj6uWT1ZhEq2jGWJoO89GZ/FQTKIyCoEgVUzs8PcRkk2R5FItJd4VbEAIk4jDJpJplNs6lW77aKGJMrxyNwOU3yDbiEDapf+HAHUs167HhIMECgnKBsr0L6iVy0lkFPWsQaOJfOUKVmm3oGKLWNyylbPaTDJncGB2794dteTRVevEsUSXXvPq6+sZM2YMI0aMoLCwkBdeeAGAH374gSFDhtCvXz/uvffeSPuvvvqK0aNH8/DDD0e2CSG4/fbbI59vvvlmXnnllW5248dPmjiJlPxGdmlvsVa7C5+sPNIidYqd2pus1v5IvvIrxqjPkW1q/226K6Tm+XvkPEcrDfomtmsvRuosJCtjSVVOJEc9n1RxfCQld0fjEGxO6KQIlTq5mgA1bU7mB8Ih+tBPvYqxpucYaro7okzsixCCMeqzjFGfIVs9kwr9G+z0QhIEwKdXU6evQsPbqupoiMaDkmtfkvPd4WqlIqVDZcIti6iXK/dRFgR+qnAqg3Eqw0hRx+BQ+hLQj/Ic9/sRI7IZqN6MNW91mw6XWZxBAsMYqTzCYOWP+Khms/YEFfJrgrio5CsCVKGgUqJ/QK5yESPUR5q/0+eOCd+JrtATc1lniY+Pj/p3MApFRkY4X0lFRUXU9oqKisi+jIwMKiuj54VQKERtbW1Um7bOse81ukOXFIq4uDgWLFjAqlWrWLJkCffddx81NTVce+21/Oc//2Hz5s188sknrF27FoDnn3+ehQsXsnLlykjoisPh4PXXX6exsbHbwv+UiFf7k66cRKIYhYM8tmnP45bFuPQNNMnSIy1eK1z6RjaGHsIl1zHWNJckZfRBWVVC0n3gRscQlfoCqvSFHbYp07+gTq4kRzk/Ejq5LzaRjoedB7yWWSTglzVIqZEuTiJH/Jxd+pts0Z5hq/YspfqnNMnyVsfpMki5Po8t2jNs017ALYs71TchwjkmNOmjXq7H2lyMrE5fiUuuI1EZQaxoXYHSIfIIyDo8cicH6yMejojpGCklPllJ/D65JoRQMBMfdZ9JKTHJeOq0NQcly5HCKpKwkkq1XNRqn6pYsYk0TIqDPfJ9PGyjiRJi6Q3oKJjJUX5OoXIXfdRLSVemoggTQij4KCMoG1pf8BimJ+ayw0nfvn3JyMjgq6/2yVra0MCSJUuYMCG8PDdhwgTq6+tZvnx5pM3XX3+NruuMGzcu0mbBggUEg8FIm3nz5lFQUNDt5Q7ookKhqioxMTEA+P1+pJR4PB5CoRDDhg1DVVVmzpzJRx99BICu6wghUFU18qCwWq1ceumlPPvss90W/qeGiVjS1In0VS8jlj406lsxSSfF2qtU6POp19e2+uF75E5c+nq8suSwyanJJrboT5CgDGOY6c8HfR5dBqmTq3tQsiNPkhgdcRRsC7+soVFuJVeZ2apKpU9WUasvxycr0GWwnTO0vl6NXNpc48JMvvpL+im//v/snXd4HMXZwH+ze3c63amcei+WLduSLXcbF4rpxvQaCL330EJI8pGEEEISQggQIJQkJISWBEICBEw3GGxsywX3Kqv3curXduf746yTTrqTTrJkW0a/5+HB2pudnZ2dnXn3nbcwXrkBK1ns017EIzv9zinX/4uBSCYoN5ChnE+V/j47tScp9byBXd+MU9b7ykopvXlB9I14pHfzpUEvRCWMaDGZTlmFihUdjUZ9gzdrZgAX6BhlBirhXsPCITBQpFWHrKFJrsciMvr0awQTaZTr/Y51UEZkj3TeowGHrKFZbqFY/zt2fYvfb9HKFN8WV6qyhGS67VOmK79hpvoYycqJGBRLn0Rm4SL1iAuzPRxr2XDT1tbGxo0b2bhxI+A1xNy4cSOlpaUIIbjzzjt56KGHePvtt9m8eTNXXHEFqampPk+QvLw8lixZwvXXX8+aNWv46quvuO2227j44otJTU0F4Lvf/S4mk4lrr72WrVu38o9//IMnnniCu+++e1juYdA2FHa7neOOO47du3fz29/+ltraWtLSuvc/09LS+PzzzwG4+uqrWbBgAd/5zneIjOxOP3zHHXcwf/587rijb3KhMQZGCIUM9Rx2ak9iVbLwyA7q9VXEifkYRCQdepmvrCosRCtT6JSV2PVN3jDJBxjlUUqJk1oEKirmPurqfdpLxIiZpCpLDug6ijD2ybg6Wlnose3/l/f/Kw32gOUa5TqSxOI+2hxdumiS60kWpwxK06MII+Gk0Cp3YRXj/AwVo0U+qghnn/5XJB7CSSVFORWJB7NIQhFGwoglV70FKXXK9H/vzz/xDU7qMRGHk3pa5U5fnZFiElJKosjDqmbQqBdiFsmkKCcCoEkXzXIrBiKIEP7J78wikVa5G01moWAa1Dg1Chs1+mckKcf7HXfJZtrkHhRMRIspqPs9ZXrSQTFxYp7vbyEEFiWNVrmDKDk54DmHI2aRRLpyDmtZi4PgW6LhIhWbkk+1/h4aDkzK6ArmNVwcyFrW23NjOCgsLOT447vHb9cif+WVV/LXv/6VH/zgB7S3t3PDDTdgt9s5+uijWbZsGWZz9/h85ZVXuO222zjxxBNRFIXzzz+fJ5980vd7dHQ0H374IbfeeiuzZ88mPj6en/70p36xKg6EQQsUNpuNb775hpqaGs477zw/F5XeLF26lKVL+1pqJyQkcMYZZ/CXv/xlsJcfYz8GEUGCcgztFGPAyjjlSsrkmyRxPELpu+CEi1RMxNIst2ETU/FIb9bKMALvOXtkB+2yhBa5nVhlNp2yBotIY6sWWOOQII4hTMSTLE4hRsxCozNguW8b3YJE3+OBhAoVM04afH+7ZSudsgINB0nipCFtG4XJJFr0z4lSJ/f5LUKMI1e9GSklbeylSP8bYcRhxT9AlptWYpXZfvYPTlmPgQjfgluvryZOzKWNIpx6I1JKjCIah6zxGfSpwoRNTMMp62nU12ET03zxKzplJY36Wor5OyCYrN5NpMgN6R6l1DDKvirbVrmrX3dHrwYlvI/QEK3koesa1donmIjGoIQTLQoOa2PortD2AI36WpL7CUIVqUzApk8nVswOWuZIZzjWsuFk8eLF/Wo/hBA8+OCDfrYdvYmNjeXVV1/t9zrTpk1jxYoVQ25nfwzZyyMpKYnp06ezc+dOKiq61ekVFRU+9Up/fP/73+ekk07itNNCM9IrLCwkIiKCrNntALgdCpVbw0md0knl1nAScpxYYvzDH3c0GagrCvOVSZ3SidHsb7BkrzLS0WjAluqmrijMV39P6oq8RjTGcJ2ORgOpU/oulpVbw7HEenzujIGM5UrWWUnIcWKvNGKJ9WBL8Vdbh3JPsTmt7N6znYKCAvQtR2HK/4xs8yScvMdUUrCIdcjqaUHvyUkUmtxF+d5WwkUy0rwJo73Ad08S0HHQKNexY/P7jIs9BlfnetrZSfz4BObinZzTxfmowkjJOiue7HeorWgjIS6CqNQvyRQF1Oifkay04XGoI/KcgD7P6nB6Th1NBnJ3JWEsaMa9ORpjQTPS7MKDk7D9+/3RNW62171BfsYp2IviSZldhlm2kCCOxkMlHtlKzV6FRJFBmMVIR6MgdUrf8Wk06wPeU9vaFBLHuwe4pwlMmpbW4566Y2pIVOobPXTsw3ff46ZaMZo1YH+b9C3IKhWtwYk5bRtNRSrT5majktpdZv9zsmAjwRxBVcM2xk21IpG4pJ1wIokX36N+axoNttcJcyahCsuAz8leYSBnrhsTe3wtdjnAsTUz6HPScVHf2EznvvyAY0/HQ7Icj7M6g5YGN6bULdQXmZk6p+/8FmjsOWnAIztw00KUmEj11qiDMPYupmlCE2V77AO+T/mNN+5/n/q+S8HuqTcH830KeY5IcsHePs0IyoGuZWN0M6hImTU1NVgsFiIjI2lubmbRokW89tprXH311fzlL39hypQpLFq0iBdeeIGCgoKAdcTHx1Nf792Dveaaa/joo4/4xS9+wVVXXRWwfM9ImYqicJztz6NGBTncJOQ4qd1ropNKX5yCcu1tWuVOTCIGl2xGoBCvzCdWzEPpkTehJ14rcIEQArdsoUOWE63kA7DV8zAdlJIslpAmzkBRumVOTboAHScNQdNpr/fcwwz1N6zTbiNBHEu2+t1h7YMuEnKcvgnvcCSQZqKIdexlLdtYzmzOpEHEUCxfYqJyBy1yG04ayFIuxiiiaNTXEasM/PUYaj8061uJVoLbboTCQHU06Gsp0v8MgIUMphj+b1D1S6lRKZfh0VvIMlxCo76ONrmXNOWsAd/5hBwnJXvr6ZSVxIrZ/W6XuGUbAoUWuZ0YMSuo1kGXLuxyC0YRRQQ5XgNFWUer3IGJOMJEAkYZjVs045GtaDgwi0QUjLTIXVhFJmaR5LV90dZjEBYSlKNHVMsRMa6Yz3b/mmnqw37bWz1p0/ayXf6WOeozI5rk7lARSqTMA13LutalPbecT2Q/cSgmPPPmiEbsPNwYlIaipKSEG264wRsCWEpuv/12CgoKeOqpp7jkkktwOBxcfvnlQYWJ3tx333387W9/C/n6VqsV8S0OnWGvNHr3d3v47JtFIlXyPbLFFTSzmRgxi1p9OZri9CVz6k3PScQoolAJxyFrccoGOihlCj/Doqb0OU8V3uhq/cUM0GinTe4hSZxArVxOlrzEaygq9D7GcAeCvXJ0JRUD6KSVHGaTxzHsYS1WkckEcTN18ktSlFMwyxQUDDTp3+DQa0MymQ61HyTDk3ujP+KUudRLrwdLGIk06ut9KcZDQQiVNHE6O/TfUaN/RqJYjIdWdml/IEU5DZsyFY/eQbX8mEgxkWilewvHXmnEItLQcdHGPiIZH/Aa3tweAoFKjJjZ7+KuCBOxYhYuaadJbkSRBiQ6sWIObtrQ6KBJrkfTIV6ZTbhIoUnfhI6bBGWRr24dF5poI1bMpkmuI1YEV60fCLp0s7H8H4xXbgwqTAC4ZQcTxe1HpDARKsO9lo3hZSyXxygiOtUVMNx0hyxjr/ZnFMLooISJyp00yK/RcJCr3jRgvVLq1MuviSCHLfoDzDU8O+Q21mpfUiJfZo76R3ZqT6CKMOz7PTVmqr8LOWXyQATri8OBYHYTvflAXUeF9h9y1GsQKNjlZoxEYxIxtOlFGEQEUWJivzEaQukHKSWNcg1xB5iQLRQtR6espEb/lEzlO+zWnyFbubzfxS0QuvSwRXsAm5hOonIcBiKo0j+ggxI6ZRVumgkjganqAz4tXHSqi8YK3ZsDRViJCuKh0aAXEiUmDtlrQUqNZrkVHTcgcMo6nLKJSDEOVYQDXnulMBEPQLO+DZOIxUQsqjBh1zdjU4Z/kdKkg/XanUxLu5CwmhODllvruYl05RxShmgw3axv82kzD1cOZi6PMQ2FP9/ez/1RiC3FHXDxsIgMCgwPUK+tokYup1J/l2zlUrboP6dF30GU0tcYrydCKMQznzZZjKlHToWhkKgejUtrYIv2cwQGJqt30imrKdP+zS7tKfLUe4f0ZdR7kQ5LasJZagtYNhjBPCsOFZX6/5ig3oxBWNinvUysmAl4A1LZlOkYiaJV7kKXLqLFlID9FmxM9KYrMuRIEy5SkWg4qMYis9im/ZoZ6q8H9cwVYSBdOY+9+vM0auuYYfg1Geq5ADTpG9ijP0eUyGOn9hgmEUcYscQkZ1JbXkeYTKSTSjplOaBQqr/OOOUK4pWFAESLyTTL7cSJoeWlEELFJrpTf3fKatplMU4aSBYnASpif4ZYTTrRcREukn1lYWS+35rldgBy0qazvWonVpGNKvpuhY1XbiRWmTnk6xzuwsQYh5YxgWKU0rXA9lwk22UpnVRiIJwOWc409Zds0v6PDC4IGCCpJ0IoGDATI6YfcNuEDMNNCwkci5S692uTGbSzj13ak+Sqt6GI/odef1/5czJbaI51EJ3Z13WrsDT4l0CwOg+moNF1rXZZikGPwCAstOg7iRDjAn79e2QrAgP1+koilBzCxeCNxIQQmIjDrm8iQowfNi1RMNKUsyjRX2O8ciNu2USz3IpNDO6rPEbMJIx4nNTTphfj1Btopxg3zUQzlQgxjizlEjy04qQBhXY0vROnUocBizf7KSZylVso1f9FlJiCgfD9IbYlbtkyLLEVukKbJ4njaZP7kOi0U0yqOG2/rVN3uOp2uY94ZfhzhJRr/6VKvk+WuIx2itmnv0W6cjaR5NKgr0bFSqSSS7hIPiBhYowxBmJMoBhl9F4Ue/4t1YsI0xMpk/+gSP6ZPPlDCtRfsFt7CjPJfbJK9qZTVh5wvH4pJfHMJ1mcjKruV0czlQ7KyFPvo0h7kVrtc5LUE/rsXwdb8OcEEByCEUrZ3kJHMBfO4aanMLFNe5iZ6u98KnFdugKeoxLuEzQ6ZAVN+gaiRcGAAllvIsQ4JBr12mqilamYlO4+0KQz4NfsUDGJGK8HBSvJUM6nRH8dTXcMKlulEIIC9UF2aI9Rrv8XN82YSSJZnIxHtNIk12OXm4gSeSQqxxIh2kk3BB7fAgPfaPchMJKr3ESYSAgpsmYoRJCDiwYUTLSxF4UwLGTQqK9HweCXyl6iU61/QrISfEtiMEgpKdPfpEZ+zERxF+FKIk5WEyUmESEmIDBiIIp4ZcFh7e46xpHDmEAxisjRLfSXwWKRFgOcywp1Ppu1n6PjwCyymaLezx79WQzS2iePQk88tGFicPvdXXTKair0/9IkNwBgkVl4PG3YKMDGdHLVW7z1CxsNcg2a1kmMOtPnLdJbmAgkGOTlFfn+XZykkk1NnzL9sX17Tp+6u4SLQBqf4SBQfQ36GnKV2/Z/LbM/O2ZgI8KeWEQaZpJplpsJI35Qwp+UOi1yByZhwyUaadeL8H6ptxIm4tGlC6vIGjbD2USxGLvcRLxYyHjlWtZrdxMjZvhiToSCEAqT1Xuwy29Q8J7XIStIUo4hhulo0kGF/g7V+sdkEfzLP1rJZ6b4Hdu137JHfw4L6eQZfoAu3QgMB7TYSjyAwEMbFfrbGLGRqVyABGzKNL+yCcoiOmSFzw5BlxqdshI3dnTcaDhQCcMkYvoE/epio+c+QCFKTMQp65HozFQfxSAiaJcl6NKJC7vPbiVBXTjkextjjMHyrRUonLKRIu1F4sVRqCJ8v8X34W31rDtCa58qwplh+LXfsWRxKpX6e0xUbw16XqvcS4t8l5nKo/3W75ZtdMhS3NiJFXPRcbNFewAFM1bG0U4xnZRhZRzNbKOWFVRobzNdfZjJ6t3UaMsxy1J07XNa0TmZW4CBhYieGLXB70Xn5RX5hIou5mS2+GkshkNb0d/57bIUJ/VEiym0yl1YRDodssxnxBcIKaVv0VOESoyYQaesplFfT4pj4MBP7bIUl2wgSuSjKvs1EcJrYNjCDt++eJsspl0vwSIyAxpSOmQtwZxFXNgx7Y8CCqBgxEgURdqLTDBct98zooWwQdroCCGIETOA/f3ALt92hSrMpCtns0X7BS5H/wunQViJFbOokh8xXr0el2zmG+0+UsVS0tSzBtWmLpyykU3aj/2O6bio01cF3WI0k0AzW7HITJr09Ug8WEUO4SLZ5xpbo3+GJl3UyRVEicnEiXm0yT0U66/gphmBiVgxm0gl12cICmAhk2bH+ySK4wJee4wxRppvrUBhwkaucjMKJtbptwEKkUxgonpH0PgNh5KFHhvuzQOXC7SYSSQGYaVdL0aTjqA+/enK2WzS1votYD1xyDqK9b9jxIZFpFOu/xsnTaSqSylQf46UUCnfIU/xGl62y1Ka5WZvEjO5ha3aQ0Rg5gzu5r98ThK5TONU5mV2J9sJJkD0JCO/mAyAxO5jZduyBzwvVEZyC6Ra+4R2iqnS38cgLEjp6deLQxUWNNox4F8mXCRjJpGtm9cTGcRrwS3baJU7sYhMYgLsnXsTeTmRUkMIlQiRDcKrMenQS7GIDMJEtwBgFomDimURzRTWeW7HI9sJFym0yj1+9Q0WIQS6dPn6wi3bKNL+TJZyMVVbLQOen6qciUfvpFb/fL/tA2gE3moKhSLtz6Qr59KsbyFVOQOryKJVL6JUvhbUy0QRJpI4ngr9HYRUSVFOpZG16NJJJBMBnWr9U3QcxIgZlOivUMIrpIglxItjiGYyEWpgLaMQgrBtN2LAhVNvIEw5MAPrMb49XH311SGVe/HFF/v9/VsnUPRUbRuEdxKaqzxLq15Epf4ee7RnGa9e4yf5Hy50RV0MRH8LoCpMmGUSHlp9quNAhIl4MpQLqZYfkiJO7fN7i9xBgjiWOGUOmnRRw6eEixSEEJhJAgHjuc5X3ioysYpMEjw7eI8t5DGHnXzJX7mDa2yX8WXH1yRElPJZ2y6W5IWRE+H/lZ6RXxy0rbuMUUx0t/iVHQ1CRaZ6AVu1XxIr5mFWgmslujARi4umPgIFeLcEpkzNZ/vmPUgpiRS5vjHtkDU4ZN2AwbGiRB7Ncjs20W1/YBVZWEUW7bKUDr0Mi0inU1YxFA+FGDEbiU6iOI69+p9w63ZSlL5jKxTcsg0dl0+TuE17GA0nUaI70mV/CCHIVC6iRe7AKKIIl2mYGPwWT7O+jQa5GkUYSVFO9bsfm5pPqUdQqN3KVPEA4Wp3SmhdarhopFnz2s0kGRYDECvn0Ek1LXIbbbIIC2lkiUtAgQ6tjHZKiFcWYhaJvZvix0KPDWNBM3WbJXXUURdEoOi5vXi4eT6NcWh46aWXWLJkSdDU6k6nk/fff39MoOiiP2NGgJWGHCJkJpVyGa1yz6Ct0g8GgYSJ3hOClBIdRx+BSBEGMpTzKdL/RppyJmaREPAaSeIEdmiPeo04xbT9X4VuWuVuqvRl5Ks/BKBOfoGOk1i1b+CidllKrFbCbM4EwMV07oi/mThDLE2eLJIMiZS4ytjl2kNeuIWj4sZx/ZoPaXZ3smzxbcycWd+nzt70FCZGE0YRiRs7oe7aG4n0ukAGOaFqqwWbMg0pJVVyGWY9GUUYMQjrgEa44LWbCbbd0iUQdshypNSJUQfvAWQiBif1RIhxTFBuolT/By36TqKUSQOeq0s3nXotTupQhIpBWInZ71rbKndjIpY8w/cBBhQmuhBCEC3yAKjQ/4tEJ4bQ78spG9ilP0mKOI1s5bKAZaYo97NRv5ct8gHm0h3TpUmuJ0zEkWQ4jhZ9py+uhyrCadLWEyfm004xueptCCHY5vk18cpCdN3t06j0pvc85twcQSH/YDZnkttLKA5k9Byq4BzoXInkc7UUk/h2Jhc70vjLX/5CUlJSwN/q6upITk4O+FtPvhUCRSiBhhZ6bDg4j5XqgqCL7aFkpcEecpjlFrnTt+/ck2TlZDplFcX6y9jEVCLFRKwiy6+MEIIU5TR2608RJSYjMCLRaJHbyBAXYhSRuKSdMv0NskXfCdXb1zZgms8m4p7KH9PQ0MixCRN4ZNa5/GzLv3ivcSsAe1rrcEuNWanRfFbSyfPV79D6Hzcf7atkZnIsCvD86Qv5vLSGS6d2Gy6WGqxkegJPssHobT8B/buZjhTZyhW0U0wYA2sohFD6VQx0jQkhBMmcRCu7BrUt4aEVM/1PFBaRjls0h1xnT+KVBRRpfyZVnIVNnUKKsoRi/WUiZS5CKH2MYZ2ykQ5ZhoIBgQGTsIEUvmBQHtlJk76eZrmVLPU7vusMJRR7vFg4qHTpHbKcUv2fFKi/6HeOUBUT4+SV7JXP45HtGIQVKTU8tPniX0SKXJrketplCQ69gWgxjRa5HY/sxEkdZhIxiTga9bVEiokBjakDzWvfTHiNuj37eJfHuJzfhjz3DUVToaORqTVQbRgTKEY7BoMBTdOC/u7xeHxee/3WM5yNGu2YieAELTfoy9Xfy3kwVIfehDn9T5o9jdgCES5SmKjcTrpWzpfiMwxYSFSOwyy6JVObMpW5yrM4ZSNGIlGE0bvFIT+mWd9KJzUYicHUy3Cvq396Glfm5RXxSMpS/rjnCyKNZnQkz12Qz66GdIyqwucl1VhNBs7KnYxJVRACNlY3ctK4FJKsZlaU1pBoDWf9LsGmPcX86qxMFEWhRRlc6O2DIUy062WAxKpkIqXej5GvRlCVwyDpOSYUYRz0roQmO0d0e8+AlQRxHJXyf0TLyZiEDRvT6NTeIJsZ7Nu/BZfqEUSRwCqlpI+9h0OvQdMddIhyKrT/YlOmk61c6ounsdBjIyy6ic8G2bYokUe9XBVS2Tr9K5rkesYr14UUvyJWnYVLP592WUy0mMI+/SWixRQ06UIVJjQ68NBBOEailYm4aCKSSTipY4f2ONPUXzBBvR6P7MSw//mEIhyExxi4mId5nR8j0RGhxG8PwkDXUzGQxmRyPN5ttrHtk9FLTEwMNTU1QZOh1dTUEBs7sAfgES1QhBoCeTjOGym3w+HE/77iyZYzqGIXn+rLcGEnVswiVsxFFWG+iIT56o+wkoWCkTASsIpsnLIRKxlY5QR2e54jUTmak3Xvl1cgT42ptlSennOx7++aneOJxmv3MCmu79fNvLQE5qV5vwBPm5BB2bZsTkoy8+eilbzwSRxL0wpght1Xvj/biUCCBAwsTAzlOXZShV1uIlrPo1XuYZxyRUDj1np9DUnKCTTp32ASMVhFZoDauvGGeQ4NSfCvjD5lpYaHjhGNUWCXm4lTjsIlG2mTxVjJpo291LOLVCaRzzxf2Y/UTUTj72oppU6zvoMqPiRKTCJROY5YxZsLI9A25mCemyrCkHiCGiGDNwx4lVxGi76Dyerdg/IEq9I/xMo4ivVXcNFIq9yDpnSQKBZjEBEkimN9ZQ1E0CQ3kqGcj9Q1dmlPkqNeM6jthHK24caJk3YECjo6aogCRVffDWbu09Hx4CIMi18dY4w+pk+fzvvvv8/MmYEDny1btoxp06YF/K0nR6RAMVRBYriufTi+VMH6JIWJXCon4sHFu+IDivS/oOPEQCRGYtipPcl45QZc1GMkCgUjbfo+7Gxij3waDx2U6f/laf4AwF/k0xhDjDUwGCPKqTFp2EwWNjVXsjStgKaqOMpqAt8TBBckYGSECYB4ZR6x+izaZTEOWY/Xx9JfTeiRnQiEL2JhuyylWd9KmEjEJRsAcNGIke6FxENr0GtKvN43Ok46ZWXQ+AWBaJQb+tVmgTdHRLPcStgQtgHnesKpIo1M4vhQzWe79luimcpV/B//4/dYe7iZAn0EK7dspl5+jRRu8tTv+473934PVrBXCadCf4f0AK6jnbKaHdrvSFWWMkn9np8wEcocU0UG5WxiFqdzFBfyHx5GJbg2SBUWnNSToBxLmyyiRH+FCcpNfltD/bGLleSSwSe8wDzOQx3k9D7YeVMiaaHO7zkOto7Dca78NnLppZdy2223MX/+fE444QS/3z777DMefvhhnnjiiQHrOeIEikMpTIx0G8J0SVo/4aMHc90uTULX4mrAxDn6mbDfkLKLFWoNe7U/EyFySFAXoUsNi0hnnPJHhBAs9NhooZ4KtvEhz7Cs5WPOjD4t6HV7L/ShuIl2ccOEo7ngyxe4L++UfsuNpDAxUB9vZTmNrCFCmY8I4H68QbuLHOVa399WkUkHFT4DPRMxCNSgX8xSShzU0Cmr8OhtxMt4JDYMWIkRs0KOoNkqdxMlcgcMNNUstxItpg4pkmYt+7BiYycrmaiFU8UM3DSzl7VEEkct+8gKYBDZou+gWn6MSjg2UeCL6TCY8R1q2ZncwMs8RJo8vc/z6pDlZCjn+vKADPa9Pp+f+v1dxS7O1S+kvJfSwC1b0HAipMBDOxINVZoJJ4029hLJwLFGACaxiBLeo4IdOGglmVwsjJyNkJN29rGelBDbN0b/aJrGAw88wMsvv0x1dTWpqalcddVV3H///b75QErJz372M1544QXsdjuLFi3ij3/8I7m53c+gsbGR22+/nXfeeQdFUTj//PN54okniIgI7p5+xRVX8O9//5uTTjqJgoIC8vLyEEKwY8cOvvnmG5YuXcpVV1014D0cUQLF4SBMjCRaU/DJf6B7DxaSurdg0ZtjtCQW8H1Wyn9Q53kOiU4GeaB9TibT2MZGTFi4PHMGWuNipoX7exZ0Le5dgkPX/7uO9/6997k9jyebo8iNSMCta4QHCPI10lqJUMbXFBYzhcWgw0qlb5356o/Ypv2KJn09MWImkUouFpGGQ1QPaAysS416+SVWkU2sMhNdeGhp2oyZZN+E0y5LcMsWBApRIs/vq1pKHRBIPLTrZUQoE/q9npSad3EbgjCx0GOjlHLaaCKZ8ViI5rvkU8JGNvExEcRSRwlzOQcPLirZSbW+kyZ9I2aRxATlBhRh8quvP/p7N4KN/cLSKMKJYgaLSNQqyGKa3zjQ6KBRFhLPQr/rDxTevVPvpMxdwcQw//5NqUyi1Pg/CjqvoZId1KnjcVCDLl0YhQ2P7MBNM5EiF4TAgIUK/V2ukT/v93pdRBKHvamZTlopZxsvcAMmwrmc3xExxAi4vem6d7d0837LR1wXuZht5cNS9bee3/zmN/zxj3/kb3/7G1OmTKGwsJCrr76a6Ohovve97wHwyCOP8OSTT/K3v/2NcePG8ZOf/IRTTz2Vbdu2YTZ74wtdeumlVFVV8dFHH+F2u7n66qu54YYbePXVV/u9/ltvvcXf//533njjDbZu3YqUkuzsbG6//XauuuqqkLZGjwiB4kgRJAbMQ+ECBpHXIhi9F+/t23MGvPZ8zgbgo9I29lr+yVcdX7OS13ki9TfEGry+/J+2fc6VMZcA3Qt4sHq72vDV5hgsioVl3xhJNCRgFmF+A7enUNHidnBNzkJKI9dSvSeBpIQJfuUCEYrhZX/CxHCPLXX/frOHTlw00ahtJEadTpiIp12WYBVZvkBTPemQFbTLImLETJ9RoCIM1O8Nx8NGopgE6HhkBzalAE06aJTrUKRx/366GxUzEh2JTpyYS5X+IcnKCUG1FB2UB4x/EQoaHlqp9wpXPZjAURgws5LXqWMfX/MGpWxCVaYQTgqT1DsCtmcLn9JGI/M4FyVA5lTPHv929jYM7k3PMR/vyuE/1ZvIYprflmW4SEWV5oDCRH+atV9t/YC3ajay5tT7/I5fbJ7C60XbSI18jxWtX5Gm5ZPMBGZxxv4MpfuzAkt4T1nBHD2Dd6gLep3eWImjZo/XGyeRcdSyDxedVLOHccwa9BZIb3r2aYfeSZoxFYtiGfCjpD/6uu/bD6SJo5qVK1dy9tlnc/rppwOQnZ3Na6+9xpo1awCvduLxxx/n/vvv5+yzvfPxSy+9RFJSEv/5z3+4+OKL2b59O8uWLWPt2rXMmeO1NfrDH/7A0qVLefTRR4MaXYLXoD81NZWjjz6aJUuWMH36dBYtWjSoexh1AsVoFR4Gk+AqGK05HUQWDRwRsD8Gs8UQiJMzIziZa7iJa/ig9RPea/2QS20XIYRA9nAx6B3Suje6lLxVvpFfVX7AsdaFfNG+knRDGunGVG5NuD7gOa+VrOXS7HnkZxv52pID9UHiQBP65DbYraLBEGg/30gkAK3sYJ48Fidt1NOEW2+lU1biVBpwUEUix/kiaLplC52ynATlmD7XmFyQRckWN1X6hygYSVWWAqAK84Apuo1aBK1yF9EisJuphUzsfBPSvUqpUyuXE04qUcpklikrWKL3bS9APBmkMJE69pFOHjNZyjrFP2KlU9ZTqf+PWDGXaCWfDuxUsctvjPndS0Ez05v7fkEFG+89w7BnGTNxmd9iXGwx+yqzfc9tBds5mfOBwIJEsMBrK7/cwZQEm9+xjPxiduzeQZWnmipPDTfFX05RfST/5Td4cHHU/us0UEYdJSzQJ1DMBgwMnJq+i495jhkFM9i7uZRGKnzH/8djnMxN5PcS7g6EaDWK2ZYZfscGeudD4XDICDzctLT4z/1hYWEBA0gtXLiQ559/nl27djFx4kS++eYbvvzySx577DEA9u3bR3V1NSed1B3WPTo6mqOOOopVq1Zx8cUXs2rVKmw2m0+YADjppJNQFIXVq1dz7rnnBmxje3s7S5cuZdWqVSQnJ1NZWUlERARz587ljTfeIDo6NOPgUSdQHCyGQwAYbiKLLAG1C4EIVXDob5tgIE6NPJHXm97kZdfjnJKSx7iGOPLz9/nq7dmHXdfZ6tjBr2sfI8uYwVSzN8DQLudeALLDvEZ5tZ56CisFDtohaiM7lu/mzJxM4sMi+O32j7g7JZ35iUWU1Wf73W/Pewl1cjtQYSKUr7Pe17ByBSt4iU94nqfTfseuCm+CtK5JU0qNKvkRqWIJunTTIcuwiW4jTo9sRaLjls3UbVJQhIlk5SRatNBjKjhlvTc+QrDkHIDEjUOvxUUTJmWgiJKSqXoauxUnLtmEQGW1oS3g/TdQhpM2okjChIVWGqjTv6FdluCkAV26MIsksmUiRlnDPH0hcJ5fHX3ez17CRKDx31MAKNuWTXT2esJVEzEmCz9tW8jLxa9yQeZtvme5hzXM4/w+wkR/EVwBTh2fxgWTs8hI8y83ISYKs1pNu6GS786KZMeO8RztepB7q3/KjLgoUgxJbGtfxZKIkyj17OLLli9Y6rqrT/2BxpyDNnbxFTM2P8Q4wvkbdyJQ9z9fyS6+HlaBIhiBEu8NlTqKiScLgRjUe+rExPoDunLolO/MJMIQeEuwzeNN5ZiRkeF3/Gc/+xkPPPBAn/I//OEPaWlpYfLkyaiqiqZp/PKXv+TSSy8FoLq6GqBP8KmkpCTfb9XV1SQm+kdUNRgMxMbG+soE4v/+7/9obW1lz549aJrGtGnTqKur46KLLuKee+7hT3/6Uz+90ONaIZUaxRyOgkEoBJoQK+IVqB+43FCuM1TB4sL8JK5a/QGplmjmxmbxv8otnJ46lby8IjSps217Nob9hoJSSn5d+xjncT9p7jz2uTcAH5LsmcV3uBLaYRX/4G/ty9HRaaScmpa9aLjZvn2n75ovJhawyxjVj738yBJoTA1G7Xt9xiIezo3nurWv8G7LMi7IOIf/lVWT54lhu8GCECphegK1ni/pFBVYSMcpakEKOmU18YrX1bJDlpM4pZ7GrVkYRQQoOhIPop/w6l10yHKMIpomfT1RMq+PMaeUGg1yNYnKYprZRIycRaNcj0qYL8iUlJJmuRWTsNEpqziK4zDru2hkF4YAEVS7yGI6YViYicJGlmEkjHx9CjYKSCCLYjaSLWfwLr+jlXrm4f9VFaj/W3M6mBfWd8IMtvj78sF0/Q1cv2Y3V89fxxxms8dZhFbjITVpD5BNXl6RX12xMwPXCzCj3sPxx7diMrTTuCHbV/bMMPjDOp3T8uNp9zi97972HE6PPIW/NPydiebxbHFs56O2zzgl4gR+mHgX4Uo4ENz+qbA0Conkr9yBjkZMgcC52UAsaX5ailYa8ODGEMLY6MIrjAgEYkjz6IFqLBLIHvK5hxNlZWVERXX3Q7Dw1v/85z955ZVXePXVV5kyZQobN27kzjvvJDU1lSuvvHJE2/jmm2/yl7/8hczMTIqKvGuC0Wjkpz/9KaeeGnqo/CNOoBhtAsRgBAK3OrR4Ab0n1UDumkMVLKZEp3DnpOP5d9lG5sVl87eir/lr0SpunHAMz+5ZQXF7A1PNeVwRcwlF1o84IeI4zo3NpNZTgsNRR1ZrBkZDDXR661tAd/RDz/7ETQZMpKbs5E+tT1HU3oDD7aGmIYHsQcRcGCxDHUcDTaLeegXhRhMvL7iKK77+G+/KWpakX8275eXM9uQThoVSEokmkWh5BgAf8Q0GrLil3VeXkSjM5hbaZSmgoGAIKT14p6zGRBwdspQ05Ry/ZHguaccha3DTTJyYjyKMCN1IO6VEivHoeLDrm/fbYmhEiglodBItpmDARAoTaaGeo7W+BqY9+yaZXIpYxzzOxdYrUqeGG4nEg4vz+EmA/vMnL6+I4iSVQWaz70OGJYZlVdtYkiX4+YpniVai+GnNw/znmBuhR86P/oQJgO/Mj6O80UVOotmvbKdLJzPKyovf7CZ8XAbnZs4A4OKYCzgp4gR+U+dVbZ8ZuYSLYs4LUHNfdDT+zj04aedWXsJqbsdEDBOYzxreJJVJuHBSTzGt1BNDSsj9UcF2wojgtMyhp7Qfjm2QwV6vU++Ew8hQNCoqyk+gCMa9997LD3/4Qy6+2Buzp6CggJKSEn71q19x5ZVX+kJf19TUkJLS/RxramqYMWMGAMnJydTW1vrV6/F4aGxs7Dd0dl1dHRMn9k1oFxUVhdPpHLDtXYw6gWK0CQzBGKxmISO/mGaTjYw4+4BluwSG/r7Oepbr3a7BCBVCCC7LPorLso9izgfdKdM/qdlBdUcbk8Jy2eLYzg+qfsp0Wzp/WngpQhSRB6h1HeRW3YBNjWJrjwmg9zMuLDWRakzhWNMSdrf9naP+9AGXnxhGlkzv1/J4IK3BSI2lQNcNdC0hBLfkHsvt6/7Jj0+pokOL49O2fzHPOgvNXUeU6iDPHE5haRQna173yveVGl+0RQORgEDBQKcs53R9cZ/04oH2nttlMfHKfMwynma5iRgxEyklHlqI0XYxhcV+e/dN5LKHQqaymHCigNxediHd91nCJuJIC9onPfsmh9nUU0oR6xAIbCTTjp1Y0hDxXzDdlcYim4dgX+gDvUMDbU3s2ZxOZ9JmChK9C+bvZ13AfRv/w9qGEq+wt+olnpr9HR7d8TFvXua1RxlImACwmhSe/aSam05MIj6yux93boxEAreOP5EvipuZ3N79noWrYejo/CH1EWo8oRtirubfNFPHzby4/5l5w9EnkI0JC5XsJJcFZJCPElPInMjjQl7g05nS7zvSX/8PZftxKBwp6wFAR0cHiuLvvaaqKrrufanHjRtHcnIyn3zyiU+AaGlpYfXq1dx8880ALFiwALvdzrp165g925sY8NNPP0XXdY466qig105OTqaiooKsLP9UDM899xxz5/Zvi9WTUSdQDHbBOxwJVZgYaEI80POCCRaD0Vb0LPNSxnOUusv5U8Pf+Kh6BxnGNL4XdyM/qn6QszPzWJKST+aUEl/5qJVmYsaXU188ldkZzawri+53O2FxxDGkG9PwSA/1rXb+VvU1V+UsGLCNoU46B7p91Lu/Qrnu/LhxRBjCuHfjvzk5OY+78ibxn/KVaLqHc3MWIkQR4K23sDSKibqJGoN3kRJCIFABncl6YGPdnoahUmq0UUyU8CbmUkU4Ht1JvbYGIRTMIpF8jvUTJrz3EEFM6VlsYzkTmI8Jc0CD0y4PEkOv8PA9bRC6+qhrkYknk3gykUjK2IyDDpZmJPFo7ad8P/F7QfttsMJE2bbsPjYUJkWSGhPpO1Ywo5aXJs7C7nAxIdZB8sZIZsdmstK5lh31zUyOD80wLTxMpbHNw5c7WzlnjjfjZ+OGbGYmNxCr2Pj99i9o19u5xHYhEao3fLhVsfK71IcBsBlsIV0HIMJay/ntP8XUYwOwnSb+x+98f5/AdWwIf4aq/Xv6wRb4ItbRSgPT6T/OSyjvSVTWejbuiiEnbFyfa+poaHgwDpBGoIs6irGRzNyMDrY4tjM5bCJmpe+5Xe1q8zgPKw1FqJx55pn88pe/JDMzkylTprBhwwYee+wxrrnmGsD7vt9555089NBD5Obm+txGU1NTOeeccwDIy8tjyZIlXH/99Tz77LO43W5uu+02Lr744n49PI499ljee+89Fi70xlxxOBzk5ubS3NzMxx9/HPI9jDqBAvwHdJdb4eEuZBzoYjUaEEKQZcrgx0nfp8ljJ8YQTbgSzo+T7ubNlhe5Y9LxxM5cDngn2NMXullXVYTmbOGrvWbyUidR75GEiTAi1Yg+zxngq5omTk/NRhoUHt79OaU1Vs6KOg2XdKOKDixKaF4wI/E8hlKnEIKPj/8en9Xs4vXSQsZZ47gsex7/KC3EI3WMQvWN7zmZLRSV+huo1UudMH0Hu3HxNr/h1MgTOS/6TL9++LrUTLRnIxKNBCxMxDvJd9JKHWlkUhAwB0hPgWhOZguz5Ay+bF+OsfHU/W6O/pFhBQoTmEcZW2mhjihCj67ZSAUqRr6bmc9HrZ+xOOJoTEG2bwbTzz2F5Z6au27hwn8KjLeYibeYKduWzfGJEymLXIurTKPD4wlJO9HF6TNj2FDcAXjHOsC0pDj+fNTlLP34zxiJ4ucVz3Be7HEsiJjXT03B2enYzaftK5gX3kFq5/cRCDQ8lLKdKBK5lN/wHx5mK5+ypnMdN8d5A6oF0xZkMxN6eWoFond8mEAkmCMYZ8r2O9ZV3welLbTR4BfUrD/hu1kzYBHtKKjscOxiinmy77cjaV79wx/+wE9+8hNuueUWamtrSU1N5cYbb+SnP+0OkPaDH/yA9vZ2brjhBux2O0cffTTLli3zxaAAeOWVV7jttts48cQTfYGtnnzyyX6v/atf/YqaGu+eoc1m49577yUnJ4cLLrgAm80W8j0IKeUg0wkdXFpaWoiOjqa5uZmoqCjWLflRv+UPR8FiKIM+kJahRjWTpDmGoUV9CRYGezj60yM93FB+O+V3XthnUm7ckE3Ztmy2bRtHkasYVSg0eJq4bLZ30svIL/a1bfO2TF4t28wkFmFMc+KqMPE0lxNLOmEGN2EijGJ3KVfHXMrxEcf6PE563sdA1v/DRc/+DLX+spZ2fvr5Bi6YnMXi7BQ+2FvBeZOz+OhrMx9UbaO9KRmX7iKn9UpqKGITH2BK82CrmEQy45me7KJJs/Pbuid5Nv33WBXv129hxwZmhU9H6ZWH4pXSLUxkfp8EUsEmd4fupEPvYIdjFwsjjupXjb2DFeQwl4WZ3e6gPQX/nuc2UUUHds7OTMOhO3ms7im+n3A7JsUU8rvTFCGIaRt4KhvMsy62t/FU4XYuPMXAadMHb0fQuCGbH35aiFFRKFBmkG2Nw148kzdK97GWt8ikgHpKOSZmAidEHud37kB2OEXOYv7Y8GceSP4hN5XfRaohhdmey7CkCQorPuNkbiYMC8Vs5L/8muks4TiuGFSysKFud/RkMPOHXbNjU20Bf1vW8jHHRRxNuGIOeu2uZ9vqdDPhmTd9a8ZI0LUuLT/xrn69PBZ/8vsRbcfhxqjTUPRcYL5tROuugQsdhhiEgYlR3a5Mcn494uvu1N1dE4HYnoOatorZJovf8S4mT95HXGsdhfb/IuyLaVVLGS9v5Az9eOaktrC6vZBxpiy+aF/JFWU38vGEO7CZvKrggyVIHEjdGVFWnl+6kJ+v2Mjbu8uIMhl5Y3sxW6vbqXa0MDkqiR2tNUww7SLaNYW5nENsYxIS1Tf5Z5BOvBrHq03/4ov2lViEBbMSxhxL36Q/c5PMJBrK/SbxTZ1bWdfhxqKEMzFsArWeOmo8XiMvgcAojEh0vuncTEKyjc3VZpIZ71dvO3YmMJ/dfE2+lo1N7btVoOGhmI2oGDASRhp5QAuv29/grOjTmD5lcDprq2No30Xtbg9WY+BpMNsWwV/uHXwOk56kRlhYvcdFuxOe7vyEG+MySSefNbzJUZzP7Ixmflb2HAus8/Z7dHiFCc/+hHC9vTJmZzTz54a/s7z9S26LuwEp4YLIs3mj9b9kUkxko40zuKf7HpjBHbwOwG6+Jpf5IbV7uGwTQtk+zcsrQkpJjaOF5HD/sdJ13l1H5QCVAc8fyff4SMbhcCClJDzcO+5effVV/vCHP7Bzp9ejbtKkSdx2220+t9VQOCgCxbvvvss999yDruvcd999XHfddbz88ss89thj3H333Vx22WUh1zWcwkS9p4G1Hes5LerkYaszEKGoCHsT6D5rbQqJ9sBxAwK9VAfSVweqmSgsjfJNSrmT9rD1oyocHq9XRpcw0aUK7iIvr4hWdzTbW6pJNHv3th/+ahMpTgcNznZkw2Ti7GexQdlAZpqdxj0tRDDBd72EpHiEEFxgO5stju38+Jv/8MzcSw7oProYSN3d+16GilFVeGjxLMpa2lldUcfSCek07PYP4dzz2Ww0deLZE+HX3w+n/JQ/N/6d/LDJnBpxIi/b/8HlpTdQeOoP/c6fGDaBL9tXscAyj72ufehSp01rZWHEfJq1FrY5dhCmmJkR3jfLYIvWiku6UFHYxnKMhGPAhAcnDtoo4CRymEWdZxd7nEXEqjFsXt9Jp1zHpnon0SSRxXTmZ3Z21cjHrcsJV8KZas5n+/bBafbsEcHfjZ70tqWoausgM8qKSe0bffNA6BoPt86ZzLaSXYjwYn48eQG/3/k0319wMuWlZgyur8jPt5LcYGBduRUzEftTjsOHPI0RMydzk1+9z5YtJzLCzB9mXUS1o5T3ysp4p/V97om/DU/90RjS2vDs8W9LA+V00MznvBSyQNFzPAVisHPaQGWFEH2EiVDOOxBhYjjXpdHImWeeydKlS7nrrrv45S9/ycMPP8x1113HrbfeCsDatWu5/vrr2bdvH/fff39IdY64QOHxeLj77rv57LPPiI6OZvbs2Zx77rm8+eabrF69mgsvvPCQPbh4QxxLIk8auOAw0J/KPVT6mzAPpfDQRSA1rS51XixayZKUfOp2jcdsCD5xZ+QX09DpZMPecjLyvccum5pD0c44UhqXsL7OxhqDHV13YS+KI0qJo1ZbgU4aOh521kQzLbmTCncV18Vewdvuv5E6uYjKHUO7v8HsmcfOLB60UDHQMzsKaNjdfx0zXDqF+//d3f9R3JZ5AwAV7ioWWY9is74GXUoUIfzGYExnOB9V/4MzJkzD4XHx1Q7vpB6tRnHRrC5Dv77B1KJUr8B3Wia8XlrDeOagoWHASBlb6KSFcKJorpmJRFJOCwKBGyeJNJLKpP21eQWK5W0rKHOX85uFC9ixo/s6ob4voQgTXfQUKsIN6rALEz1x65IaKjk5I4Ud+gZeunA2d3/0AdfMncCPl7/IDTmnkLzVhWZegbPxOL7mX8zhLE7mJopY74sd8QHP0EkLBVHJfMd2EXbxMYsSxuOpM/JO6/u46xch6BuCHEDDhYsOruMZdDQaKCeBLCQ6bTQSSXzfhofAUD6UgjEYzbNb13i9pJAfn540cOEgHM7r0sFi48aNvgyiTz75JH/84x+54oorfL9fdtllzJ49m3vvvffwESjWrFnDlClTSEvzupKddtppfPjhh0gpvVbqISQcGUmEEOxy7uWP9X/i92m/GvHrHcji3ZzXTvR26zC2ZmAO1N3r383vsE/Zx1Ozv+N3vPfk0eJ2sLm2iV2NzexpbPWNj7RIC4+UbuBMvIZrCz023lMkGbObKS4MRyGMf4m/YxZxjNfD+aLaSl6Chxnh00g3xnDBm8v59wWC8u3jDug+hspIb89tTtKgtO9xr9rcxfT0GP5v/lSuWb2B1Q37qGhvItUSQ42jhfiwCDR0dAkxJgtfNldy/szxvgU9GL3V2Gas1FNGAl6Xs3SmUMxGxuHdZhEILPvTsdexmXTyfXU1eBp51f4vkg1J/HrhgiHNBxn5xWwx2ZjqsvuO9dfvPb9q0yKDv0+DESh70lOwDFMVZqfE0eRwsa6qHo+u88xp88l/9j+YVcGZ//iYMxPn8ffq97iE0ziWyxEorDTYcesZrNR/Q6wyk0p9DTfyZ+ZGt6FLnXpnG7a6k5gaDjGkUkcxiYwjbG4TzrXd9h4SSTO1ZDIdieR5rseEhWt4CoHSrzAxkJYChudDqet59OfO3hODUDAc4LpxuK9LBwOHw+FzU3U4HD4Pj54sXLgQhyN0u70RFygqKyt9Dw0gLS2NiooKzjzzTObOnctdd/UNLXuwGWfK5Lq4KwYu+C1huHzGl7et4OPW5dw4cT5dr2fZtuyAQlV93IfoTREsmReOxWjgk+JK2lwaBkXwvYmLKd7d/YIv0Y+mTd+MXe4gRplOvPAKG1N1GwCeOigETky9nP+r+QXvvHE0ZiWsTx6G3urv3nQtDKEsLL21E6EIEqGGTe8v8VlYUlPQ+pupobDcRpkbOjU3UkK6NZb58eN4v3IrGjqLEyfiiPPu15eVpbCjfnzQ+gK188vNNtLj65H1XiFhpcHOeE9Dvx4eXfk4opM28ELDf7ky9rukGJPZOYAg05v+nl3PL95Q1eJDFSD6QwjB/UdP5/tvFfFV+XbiLGZcmk7Z9y7k6bXb+cVXm3i66TMcUmMj7zOD03znlshXCSMGu/4N2cxiFyvZW2YkN95JvjwFFO8YiCCW1/gRV/I4NXxBIeuII51I4qmjhBI2cit/p5IdOOnASUfI7e89F/R2Oe0SOIaSAmCgODkQ+D0SQrDVvQNI7PNbqIyGdWmkmTRpEq+99ho///nPueiii3j99df7aCJee+01LrroopDrPGRGmddeey3XXnvtsNV3IF/+RmFkyv68Et9m+hMktrOCVuqZzZkhZS304OLTti/4Q/ojiA7BV/Uf4pE6NRWp6A3mPrEOWj0OciMTibd0cNr4dOo7HOhSkmgNp2xbl7V/t4dAApmcqU/3i4PQ89+6dPOnyl/QTiNPlP+Ha1O7t7Z6fhENJFSEwkDCxEBjs2+/DzyWBxL6dvM1bhzks5hvOjezp62OeXHZGBSFjPxijnaPZ0NTGQBm1bi/jZsHvG5vSlylzLHMpHC/yDjfE8U+djOewMFwutxNq9nN8ub/cUfCLcyaUsn27X3LDmUxGmyZLkZCmOiibFs2t03MxKqGER3XxP8tX88fT1vAbfPyeWtzHVtaqsg1jKfD468NMJNEhJJDtJjKIq1H+vF62Lb/nw7a8ODiHH7MCl4mDkEEcdipoYhCwrDyHX6BASMuur80d7OazXzMVE4gi+kYCQuYxbU3vcfdQN4owbZFBhsrB/zfq58cM6NP2a7fu3JoDIXhXpcOZ37yk59w3nnnsWrVKvLz83n00Uf58MMPfYGs1qxZw+bNm31Bs0JhxAWK1NRUKiq6Y8pXVFQwb97g/a4LCwuJiIigLMk76I2apGVFti8DZ0eaA3eUfyhmY4uKpcLsK9Oa04Ee5m8NHlZnxNhiwJngwlJhpjmvvc+1LeVetyAtTMfYYqBtfGefMhF7w3FHeVCdXhVSR3rfQR293UpHmoOwOhPuKA/OBLff74pT+NoZ6J46k5wjek+5ee2UNnb7M7u2RKHEupCdKjVswjTeQTH/w0aSbw/cuTYGw4Q2VlW7sMR6sKW4ydEt7ONLpjAfh9VNZJGFqJjFRBZZWBuzBuf4NVhEJgoqObqFDoMb1948HJPclG1LpCJeISK9EYBagBl29D0xaCYdZ4KLOcD2LO9XVpbS/bVVV+S9J2O4zsa655gyNZcwUojGzFviff5ldzGrzcqFExJJMCnUFWXimdFEMza/vpnqslNqsJKoddKsmNiydQaW/e0BMKtupkZUsaUthdTdYZQarLQoXmv8pqo4SAKLU5Jo1735V6DPcyptNOOpNKM3mjBMaMOzJ4KwuV5tQ89l3b3Xq5IX4Rp6ownTVO+i06WZMGR1+D0ngLLcOsJJIxyBSW+kijruL7mXxlgDtjadGtVMTVo4LZFRFEerVNfE055VS9hOk9/YK07yX2B63lNavff/5gILpUoVrqQ6KhQHtnIjxkbDfuPACHJPrfLdL0AcCi17S9nM/7gl62pMrSaKk1Sa8R+jsww1NJkFJs/+Zxvt7ceYlAYAmrH5PadWYWSLyf85mqTORHcLu4xRTHS3+D2nLqJ0NzMKtrKlLcX3TB2af5mUsGZijR1UOqMZb6mnsDmT3uRYvEl2OjUjQijsMUb5jQdQWeiYyF9r13Py+Gye2lLKzNQTeOCc8fyzdB21HZ1Eqx5YBYYJbRirdTJtE1BTdpIssgmTXkFMdyi4N0djLGjm8+0S07h1zLPNJZd0KhDMyJlOU0cDX+5YyeT8iSzcfCeRBR4UcxMa+5jLXDKYiqkyjPrGPRSnSbbu+YxJc7OJIBYTZopYx0IuRtmbEHDsdVGkdFC5NRxLrAd3p/f5JOR4570c3dI9jrfn0JHmoCC2knazoNmqUNww3vcsgz2nJoeLSJMRgyJQHR3k5Rf7yuwypvNWUxudHo1piTE0VcURHaFjdUjqrQO7xg7XujSaOfvss/n444/561//ytq1axk/fjxtbW189tlnvjI5OTksW7aMX/0qNHOAEY9D4fF4yMvLY/ny5T7jl5UrVxIXFxfS+f3FoTgcY06MJAfbhqLn10c7TVSzlzCsxJCCtdci3FM7sNBj4w1+zhJuJ4LuLysdjb0UUqNOoEF+TayYxTGaNyb9zIwmtjp2MC3cm0o70PZET74mid0fpAQMLV2ivUat/ByBioFI3NgRCP6S8TQr21fzSvNrRBjCeG/xrQesDg9kiBmqhmI4tpZ675lD32fxBBeTYkjikdRfkJdXRHmHnXSLjRW1e4hvOIVWrZX3K6rJYbbvvN5754G+Mqs6m3lzcwse6cZsP561agtztSiaqMRFJ+dkjPMLTlVYGkU1e1htfI47Em4h3hB4DhgozkAgettQ9MdIaiPAf0z0HgvHf/J7LsyYxfaWah6adhbRpnAcmpt7V67AiIEvOlZyGy+z2tBGvWc1dawgQRxLvDrPL6DZSoOdZn0ru/Q/cCN/Ij+1gVft/6JgdgEvf/kqZmHGrjczm7PZyidABOPEFWyXj3ABD+DBxdf8k2r2ciLXM5mjeYUfMYcz+Zhn94fuDieZCczgNL/3uOv6XdTqXxAhxmMRaZRpb5GiLMEgvAa9XW0OlP69i1DeQY+uY+gVltqtaXxRWsOJ41L9+jmU+A/DtS6NxaHwZ8Q1FAaDgd/97nccf/zx6LrOD37wg5Af2mBY07GOOeEz+wTvOZLo0iocLPxTEccwnjlBy/ZOL6yg8mdu4WqeJJIEPlY34ZR12MR0FKESxzwa5Xr+p+xgsh7BrjIXyeRS6MsL0a0qDbSPWmCuJTrTCqW2PkJFlnoJmfJiXLKRCvlfGuQaZqvPsLEsBgun8VTGPK4pu5U5H/yaU3ensTgrmQSLGaemcXpuOuGG4X0tRjKSq3uvNaBQ1ZMr+D0vee6i1lNHefV2PLrOxqYymquzibfAexVVfsIE9DXIC6S6/tcmO+GKmaImlZnEYBICKzasxDAjo5Etju0YhYH8sMkIIbBTzds8wgURSwctTAxEhqevFq43Iy1IhMK7x93CtV/8l0nxVl4rWctNucdiVo18Z3IWd67/FwD/4P9weMxkKd8lTMRTqf8Pkx7FCnUcHtoJE97FvUluxCamYZYRfNH+DtPMU3GXukg1pjDFnMdCy1y+qG4mgvNZyf8wEs1k8X0KZRGJtJHNTM7mhzzHdXzC8wC00cg0TsFh2stt8VdTp9Xzj5qXaaeJWNKZzRlEk+SLkKpJF7X65zhELRnK+cQp89ihPYpKOOlcyMquV6nUFnQLJBRbl97CBIBRVfsIE6FysNalbxsHxYbirLPO4qyzzhrRaySqCbToLUEjrYWKLvWQhJKDHfK154LU08o+UHjqkWAw6bkB8lhMh1JJhB7PZj7CxCSsSnfiGUUYiRfeZDUlog6btpPIXoZ8/VmQ792TwTelUUEXUyEEYSKOcfIqsrkcIQQrDXYWemwYhZEUQzLPLTiH3Ck1fFVWS6vLu/303be+4Htz8zg+2z8rY8801IcbPcNfByKGFL7Lb3ih/s9MUSz8MP9UrxV7GmzfDpMSHHjqhK+OLuEwkFAB3QJSutFNkiGRHWz3Ow+8wcxmhBfQoXfwdcdaFljn8Q0fcAb3cEpk4IyXR1IY5UB09d/1cTE8U/8ClmQT/y7byHkZM4itO4m/ZpzADyp/SpI2ia18iS4cWMlAxUylfJ8OvQxtv0HlOOUK6uRXJAtvDJ0aTy1O6WRl6xoWmudR2LGe0yNPYSL5rDTYsWob2CT/D0EYEifF+9vUqkwmQp9AG97gFV/zL2awhCWuh4gxtLK3MpPTmMWUtBpWdqxmr+sflLa3M46ZzPIcjRkbqqE7I2y4TCVHuYat+i/Ywa+YrN1LhJLjHVv9CBUQumdOKOVD4WCsS6OFq6++ut/fX3zxxZDqGXWRMruQUu7PF2GjVWslzhAbNPb/YGjVvW5ZMf0k6DkUE19eXlGf8MK92xGoXcMtZIQiWDRSQbX5M2YaptHYVk4C42gTfYPWSClpYy9O2UCDaGaWDOyqFegetPjQooYKofQJN1xYGsUjmQ/SXALtliJmMImMqcUAnD0pk3s+WkNJcxtXTJuA0sN97FAIFf5aoqg+VvYi3GtjE0yo6BYSsihwfZetda/znw0a47KrafF0UtLRTKYpg1L6apmC0fU8aurGs4JVTObooG22KBYyjOksb1tBA2Ucx5UUlvavAg9E14KysbqRcbYIos0mv98dQiUad4AzvRys5xZKLJJUUzIPpfwEKSV/KnmJ8qpiTooYhypUkowJnKBdwwlcw0phB2CCegO61AAdRRhpl6VU6u+SIBaRKI4BCdfGXs4jtU+QFzuJNeXrqPXUcXvFj5hheByAbOUyWuROjHoMCDeRymSa5VaMIooc9RpKtCdIJIfdrMJEOI1UsLY0zeedpQqVNGMqJ0YuRovV+Kp9Ne80/pbJHIOUsxD7P8KEEFhEGmmcQ6X+P3bI35LHD4joYVDdJVRA6M//2xod+WDR3Nzs93d7ezubN2+mra2NE088MeR6Rq1AAVCnNRBjsKEIBRUDqjiwADWduoMIxXrA9XQRTIUXKPNhKAwlvPBIqdv7S0nszSIouDzmYjaYN6HXH0OKR/RZ8BrlWqJFPpGKNxLkSux+X8f9XXvr9sHnVoAee79BvpasRgNPLZnPs+t2cslbn6PpkudPX0hsuHe7qacraSj2ExBYIApV09NTSxAoBbje2L2w9qep8GpnJlPrXMCHbZ+xpOREpkxowBw2gUg1MlAoi37bBBCGgwSyfTEmeratJ+mmVD5u/YwytiCRPk+PUOn5ruhIHB6N3uLpQGHpD4Uw2HMs9BwDXf03O6OZDGMaupT8tu5JjrMuwikDeygoQkWTLnQpsIpMctVbgG4hcF1ZFM2GFlrqWsnxHE8t/8SNA6dsJEzEYhRRxIm59JStbWIqAE7djplpGNRZTJRzyNYTWMfbNFHFydxEbK909KpQOTZiIfMss7ir/OfM02CvcOChjU4qaJN7ceE1Yp4gbkZKnQbtT0juQSD8xvRwxLEY48D597//3eeYx+PhuuuuY+LEiSHXM2oFih07xjNxv0lBVxKkA0UgcEtPvwJFfwZjobogDtVNsTJOJbtGG7hgDw6F4aqZCLY4tlHhrmK2ZQZktlJYGuW34HlkB0aiMYi+kf0GorA0KqAx4mDoqYIFfyGvakcOZ1tzOHsyrFGWs2xvBd+d6t+PocSdGC5jzN5+/z3/Nk1tCbkfVhrsTPccxZ86XyTLlI5jdxZQgoZOWkoiFVV9J47+2mrEjLuHK2J/QZA2ObaSaxzP3JRW37GhLCKzkgPvc+8xRg1olDmYuCKDYTBuwz37c11ZNCoLODnTihCCj1o/pcHTyN/5PrqIJUE/GpsyjXZZgkTHKKORogUz3REie25TFXjOp3HmauasPYs40tktJM36NhJVfw1Sb9rYQyu7qNE+IZxUog33c4rnFtbzP97mt1zF46wrjyCmV9gHs2LmdO5kA+9TI4vR8eCiFgUjUSKPTOVCwkUqHr2THRSynBeZx3lYsQXdTgvEmLBxaDAYDNx3332cdNJJ/PjHPw7tnBFu07AzkgukWRma0WPvSG+HkoMlQPS30CzIdJHr+SV/aXyZK2MuIcmY2GchbJIbiBV9YxUMZGDYRZbSQYlheKLZdWkpAgkFEzrn8vudn3KM4v0t1L3ckfLsGOj8gewprNjI41jCmo9mWmb3d35hxwbAK1AUUUgHLcSTSTITAtbTdY1WqROn1RI9QJCh06JOYa+zb8CuQ7FYdAkATxat4IHzMw6ojp4MpJHoSZc9TwwpFJZCLOegUk0De5jPSbQqk6jSP6RGW45Ew0wiLXInTmqxkk2MmEmEMp5IMaFHfUfTiBEXnUxgHrWqHfa7d0upo+FAoNIitxOjzACgSHuJKCYyxfAjNnkeIJI8X32zPcezgr+zgy/JpIA9tdG0EcW09HqaNDvRahTJ5GLhKxKI41x+xAq1Eh0NU48tToMSzln6fSznRTbxISdwHeOZS2Fp323Q3vTcHulNoABwHunBLYNvfY0xeMxmM263G6NxYJOCUSdQBEKT2rBtU/THwc5YGSqHo/tsvCGOS2Mu5FX7v7gz/paAoWxVYQpw5sGht+FhMAPXVq0Ne3O3Bmyg7aqBFpKeNFGJCUsfF9yRxKulWMIWPmEJ5/mOR6lRbKQQCUSTRDaz2Mf6gOd3IaXETBJlbOLEzOA+/Hl5RVRWd/DW1g1MnLyHXTsCCymBGMn3K9uTReOGzANO/BaKINGffUsXVi5mpjyTarmeVv0jNNoRCEzEESHGeftavomDetpkEWEygQZ9LU1yHWEk8B6TGS8kZWopnVoNtZ7PMBGNgoV6vsBMMlHkkaScQLn2H8LJoEGuJEU5BYBphgf82vOK+DVIwQc8RZo4mwhlPHb9Bf5Wvg07VaQwkUjimc2ZrODv1FPGsVoWX6mNuGULRuG9f++7NpMExvEy91DIO3zKnwC4iAeJJY0wAmuZA0XlDNTXXRQ7S4lRh665/DbT2dnJK6+8wvr164mIiGD69Ol85zvfYe/evSHXcUQIFM1aC5FqBLrUCRuilmEoBJrsqts6eWnTHq6ankui1dz3pB4Mh6HRwRQmBrvvn2ZMZbxpHOs7v0HWH+tXxiqyaZelWEXfIEEjSW/Dw4EmqU2OLUwKy/UTOELRSITSVzGkhtDiwRGKhseNgyIKYb9A4W3rTF98Tm8dLaR6DH42D/7ChE69/AqLyCSRCaxsX022KZNUY2APjpTwaJakTEEVyqANMQP193AIGmdN9I69oWSK7W8M9H72oWrdAAzCSoI4hgSO8R1zynraZQmKcJEpLqRCfxc732DXv8FrFOFNjFbPamxyElu1tQAomHHQiLY/aJiDajKU8zGJaNLEmThpYLK8l3AlOWBb4sV8wmQi0WIqtfJTPHobbbKIdqo4nuuYxklUspMveImTuJE3+D2p4gw8eictbCFOLKCdElYalrDQY8NKNEdxISt5lXmcTymbWcZTuHFww3631d4xVHoSyjvlYjK7qQmxtw8/KioquO+++3j//ffp6OhgwoQJvPjii8yZ43XZl1Lys5/9jBdeeAG73c6iRYv44x//SG5urq+OxsZGbr/9dt555x0UReH888/niSeeICIi+PZybW0txx57LPX19eTm5lJYWEhubi4PP/wwy5YtIyMjNE3eqBMoAg+qKCQ6Ljp9ku5ASW0GS6iTYIIljAXpCVz7zgre/s5Jw55k5mAIEMOVywPgxMjF/Kb875zFsX6ThZkkGmUhnbIKh6wiRVnq01jo0k2L3ImOi1hl1rC1pSeBxkfvvi12lfKG/b/8JvVB3+/95dkYzn4bSWJI9SXy6knvhW+XCvvY54t70BOJholYrCKLRGzMscZS4izjjab/kGJMZlGEf5rsvKhkfvTNf7C7OrGZwvvUB4NzDex5/GBqCQcSJg9EmAhGmIgnTHQn8UpSTgC8Qp1D1mIQETTLrezTX0SgME35NWGKjTptBaXy3xgIZ5xyI1FiIqKHJtdMImYRfKsqXllIvOJNGBUtJ2OXW1BlBBnqeUzTvNuVqUwii+m8I17BJqaxW38aULCQjlXJRMXs1w8LPUuYyRLcOGikjGp2ITDwuVKOUfFf8PoTLoJhwtxvHpnDmaamJhYtWsTxxx/P+++/T0JCArt37yYmplvj8sgjj/Dkk0/yt7/9jXHjxvGTn/yEU089lW3btmE2e/v60ksvpaqqio8++gi3283VV1/NDTfcwKuvvhr02vfddx9paWkUFhZSV1fHtGnT2LZtGzfccAPf//73+cc//hHSPYx4pMwDpXekzDtFaDfWxYEKFkPNJ7CppoEIk4mcmMiAv4eqneg5WWkmHdU1/IG7RmIh7Nnvj5X+lxxmk77fJ74nutRollswEet1jVPcuGUbMWIazXIrNmVawPqNZh23Y3B90TtqX39scWzj7eb3uTX+eqLV/vsnWP8Nx2Iy0EQqwjVfyO3BXLfN8yqz8Rrv9XdOg74Gq8hC011Y1e6vFCklzXILNqXAr1+/aPuKWEMMk8JyMe53487LK0JKyT9L1/P83hV8csKdAa/Vn1fUQLgMYPIMr3DR33UH0kgN5dm7ZBNtsohYZfbAhYOc3xq2FuGIxy2bKZNvEM8xpKlLfdsPPfHIdqTUaaeMCDHOF90SoEOWYxHpfc7Z5HmAXPUGwoW/dq1V7qZdFtMid9EsN5MslpChngPgy+DZGyklHtrYqT1BJ+XMUf/oK7dX+xOZyoUYA7ibD8Rsj4lnuWZEI1SORKTMH/7wh3z11VesWLEi4O9SSlJTU7nnnnv4/ve/D3jdPZOSkvjrX//KxRdfzPbt28nPz2ft2rU+rcayZctYunQp5eXlpKYG1oomJSXx5ptvcvTRR1NUVMT06dNpbW1l27ZtLFq0iKam4EkIezLqNBSDJVC2vGAEEh4qO+2khtsGfd1pScGjrg1FmAC8uULqh253cLC+oHv38SxOZxl/4Hx+2sdoUBEq0eTjks20ye3EMo1IZb/6ToJHdvpNdF1YYj00Vx64DUbvVNzgtcn5Te3jPJP2GJFq/14owQzuhosu471gKLEutIrAX/z90a6k0KrX+wSKYJhEnDfmCxto0/cSKcbjknasIhOD8N/3LiyNoooEmrDSYFuNxRCOioGyqnLCVAML48exsr77Hbvoqz/xwtxLiTaF+wkCHW5vAg+LMfTpqd0sMLXJQSV7G+yW40iGUAcwiRhixdCEia7zc+IX01xpQpcaNgr8NBs96ZAVbNV+4ftbIZws5UIsIoty7S2cNFBg+BnQLdQuV4txUkON/hnZ6qV+9UWKXCJFLsmc7Hd8ned2wslgsno3ivB/ng5q2K09zVTlATTR5id0ZCmX0CBXk8hiX4yLUFmjNsPgnOFGlJYW//kwLCyMsLC+Qsjbb7/NqaeeyoUXXsjnn39OWloat9xyC9dffz0A+/bto7q6mpNO6k50GB0dzVFHHcWqVau4+OKLWbVqFTabzSdMAJx00kkoisLq1as599xzA7axtbWV9PS+c4Gqqr4U56Ew6gSKQJN1qOqwoRBMmBjql9CBpLXuSjw2FA6lOj6CWMYzl29Y5peeuQtFGDGLeBzYUHpkIY0WU2mSGxFSxSLS/CbHrmREB0LAaH2ucv7c+HduiL2KSDVi0P02nMJEzzqDjfHe2olQcMkmmvT1JHKir/5gRIrx6LiJYiJRymRc0o4iTLTKvWh00C5LWGk4HgBdeojSGumkhXj7cQiszMpsAft0n5ai0dUdIvuU5Dx+9M1/OC5xIt/P7xbAL3zzMxKt4fzljEUhbxl2JRGDvoazPRmMEDHSAsRI0PVeKEIljMDCBECYjMdEHC7sqIQxQbkRF01U6x/RzJaA59Tqn5MgjqZV7goq6PdmlvokQMDnGC6SmajehiJUlF6RRQzCSgLHhixMdMpKVKx+3iUHg107swlXAvdDp+5NItnb/uBnP/sZDzzwQJ/yRUVF/PGPf+Tuu+/mxz/+MWvXruV73/seJpOJK6+8kurqasCrTehJUlKS77fq6moSE/23sQwGA7Gxsb4ygUhLS6O4uJjs7GzfMZfLxUMPPcQxxxwT9LzejDqBAsCub8GmeIOySKnzIj8nSTkJm+JNLNWfgNE1GRzIVshQhIkDESQOhEMx+fX2MZ+T2cIsuZBf1DzCFNcJvufTdyGTqD0mKSEUYoXXhqJNFtGuF6NiJUpMGlK7ei/Mgfr76foXsCgWjrYu8LV9oD4cCSEi0DWGS3Au0/9NpnoxG4UO2IOW65DldMoqVMxYRTYAJuFtg1kk0aR/g4e27vKU4lLH4aaZdK2VMKx+XjS5k/bg0rs/Ha8bvwjGL2J5zS7fsXs+WoOmS5KsZrY3NJMfP7R7Hi7tQ0/6GwcHYwwcCLp00U4ZVjJQhIkm1hEpcslRr/IrF898HJ5ajH1Ch4FGJ3HKUZhlMu2yiGgxZcDrDiQQmkVS0N8EAoes6bdMF723YA4nysrK/LY8AmknAHRdZ86cOTz88MMAzJw5ky1btvDss89y5ZVXjmgbTzzxRN566y0WL14MeD0+YmJiyMzMZNmyZSHXM6oEinfffRfAJ0yAd9GxiRlU6e9hlxvJUi4J+nL3nJADuSOF4hd/KIWJjnQn0dtHxyPrLbgpQsGihJOSvJv66qkBz9EIHCUQIELkgMjBIztokTvJzsmkZN3g+6IroFXPtvWkydPJD1Lv9E2Eh9MiEkioMI5vx9kY+taPLt3oOLGItAHLSnSixKSA++8AMcp0bzmp0U4JTtlAmyzGIlL5WinmGN2bm7ZLqNi9cwJ72+rw6BoGpVuzcvnx3vbXdzh4eUsRu24+jy9Ka/imppHI2hlB29fznQlfXILVMXg995EmSCTkOPu8F1Xah5TLfxNOGkYRSapyBvv0l5ilPt7nfJdsRsNBO93zoC8YndaBmUQQkiLtRVI4jQRx9LAbnoP3Q7FF34OdjWSp3xn2+g8mUVFRIdlQpKSkkJ+f73csLy+PN998E4DkZK83Tk1NDSkp3d5UNTU1zJgxw1emtrbWrw6Px0NjY6Pv/EA8+uijvq2ZhIQEnn76acaPH8/ixYsxDCJZ4uhYnfZzxhln8CDP9TmepB5HEscFNf7povfLHywJUqg4PBphqtLvNQ+VZgIGr53ob3Icjq/jG+Ku5pn6P3FWYjudtUcFKDHwxCQQuLEDQ3c37VqYA/VPFtMwiP5fi8NtEelNf8GtWuUuIkTocSAGwqO30yDXEKfMJULJQUp9vzFtAZ+z2We0WVgaxawMO8mGRHpbgUspWV1Rx9n/+pQL87KJNpvYZ29lV2MLRwd5zL3fmeqaeLJDdBcc6H0L9b053McBgF3fTLn8N+nifFLUk9mtPcMO7dGg5V00YcDCOK5CSt1vy0HFhI6bSJHLFPXH7NNfJkKMwzKAHc5QkGjskr8ngklUaP8jTT192K9xuLFo0SJ27tzpd2zXrl1kZXk9ssaNG0dycjKffPKJT4BoaWlh9erV3HzzzQAsWLAAu93OunXrmD3ba4/z6aefous6Rx0VaM71EhER4XMr7ezs5PLLL8disQz6Ho6oXN+DlZR7TgiFpVEUlkaxfXuO7z/wqqH0Ho4wZduyKduWTavTzf99to5Gh4vNtY2srqgLeI1QNBojES1wMMLESoN9wMlxqJNnz3ZEq1F8L+EmNnVu5V1+R7anhp5ORhqdA9aninAkGp2yig5ZMaQ2QfD7CcNCu97ep+2HkkZ9g+/fXc+q678ipcOv7EDPskGuxSYCe870RsGATvAcGXZ9Mx2UoRBGmyzCLVsRQvF+4coSn2ZjpcGORPKbstc5LeoU9uzs9pl/p2ITC//0Cbd/sJpXzjmWp5Z43U1/+dUmchnc1tZAgkLP9zoQXXNAKBzuwoQ3rfgX7NafxkAUKarXWHK8ciNz1GeYa3gWVfSNkxMhsslSLqGcf7NPexmP3kGd7vU6cNKICa8LsUFEECOm0SkrR6T9ijASxwLa2EmrDH1+7JRVfKP9bETaNNLcddddfP311zz88MPs2bOHV199leeff55bb70V8K5vd955Jw899BBvv/02mzdv5oorriA1NZVzzjkH8Go0lixZwvXXX8+aNWv46quvuO2227j44ouDenh08ec//5n09HSSk5OJiIggNzeXV155ZVD3MGo0FF988QVnnHHGsNfb29e5p6p++/YcPmldznlTo3DqGonmCKz7XYTse3O5ISmL9iIjK50fcuOs4JNfV56Pg8FILoJDNYj1z5IZRS7XkEwDG3mPFq0eq3oeKiYMhOatkKAcTbhoxyF3hqS6D0YgjZWdGsqrcqkIoi05FAtJrDKz398H0yZNdtIpy3HImv1ugf73aSLaF6vATDKNci0GrCiYfQK7lDpNcj1mkeLrf6/772YspGMT06jWPyBNPQtdajTIr3mTQrKYQVTjGRDh1QY6NQ/vVGzm5QVXYVIM0All26DD48Kimjg2qVvwCDVM91C0fYMVvkcD+/S/0iTXIzCSr/7Ad1wJIaKwRUljhvIIzfo2dul/wE0LYSRjJsHvoy1K5LFLe5pYMWfQnhihkK1eikGzovfRafXFKetpltsp0/+NHsKHyeHI3Llzeeutt/jRj37Egw8+yLhx43j88ce59NJuj5of/OAHtLe3c8MNN2C32zn66KNZtmyZLwYFwCuvvMJtt93GiSee6Ats9eSTT/Z77ddff5077riDH/3oR4wfP57rrruOhx56iHvuuYfOzk6uu+66kO5h1AgUpaWlrF271u9Y19ftcO3h9Uy007UInhi5mOYSeMP+X9r0Nn6zaIGvvMXg3ftdaj6Vsm3eY1es+iufXHOcL+31huoGsqMHnwBrKAxFmDjQCbJnn/VH77ZFEscxXE4lO/lAf5FoOR2V8EHpzMJFCq1yN5Eid+DCIfCZugdd8wTNhjlaFpP+UYgUkzEQjoMavAJF94Rtl6Uo0ogu3bhpwSVb6eRDhFCQUidCGYeGE5so8PvCVYRKBDm4sBMm4vcLE2726M9iEzNIVm/GLUyw3xtj+/YcIjLXMT4iwStM9MDu7uC0lHziwyJGNJDbkShIgNdOxiGrmazeg4m4gIHJQiFaySdSTKRa/5A6uYJM5Xy/300iBhMxOGV9vwGyhooiDMSr89mjPQtc2G9ZTToo1f+JxE0aZ1PBf4e9PQeDM844o98PZyEEDz74IA8++GDQMrGxsf0GsQrEI488wq9+9Stuv/12ioqKEELwne98B7PZzI9+9KMjT6CYNWsWeXl50CO/gJN6r4FZjz28Fn0nUcrQvAC6CLTHfkHm2QBs3x78vLy8In6YfyoV27sNZoQzgX9uKWZpAG3TYCfL6O3Bs6oeCmGid11DsbMoNiSRJs+iTluFTZnaZ982EFLqFBeaMeJ1gRxkNuygNMsthCnHdEUyHhWUrBtcpt0U9RRK9dcZr15HeIDQ313W8s36VqLFFO+CQR0m4vDQipOGoFsmDmoJw+v+6ZSNbNN+yTjlKmxKga9Mzyyv9pLpbK/7wqd96HofPm39nCRlTp/3o3e5nvT3bvTmcNnKGglK1lkp1/9FirJ0WARtRRhIVZcG/d0oIqjWPyFDnBtwC6U/PLIdDQdhInjMHotIJ1O5iF2ep5houC1ouXCRSqb4Du3sI14spEIfnQLFoWL79u0sWbKkz/EZM2awb9++kOsZNQJFQkICuu4/05tF3xCr/Q3OwdD7yzuUSaiwdAZzMnPY3mtbcRwFbG8+8DZ1pDmwVPR9aQ+HWAmB6g1VwLCQgUd8gFVkew36REHAci1yF7p0IRAkjzewa8820pQzD7DV3bTKPaQoS4a1f3r2wUj0e0KOk7qi0PPXRIhxNBFHs76NaCW/37Jd71JXumwTMXTqVbQTOAeLihmJhl3fzB79eQrUnwUNrNQ1Ztsw83WpGegWEjZ0buJ7CTcFPK9LmGjRWqlwV5Jn9n48BHs3gl33SEJKSTvFtMqdxOc4EHtV4pQ5A584DGQpl1EvV7BT+z0JLCZGmYUhxHxKHjrQ6PQJoeCNJxFGol8QrAgm0sA6NOkIKrQIoWBTpmIhDZVDl3RwtGK1WnE6+3rZbdiwgXHjxoVcz6gRKBwOB5GR3WGsO2VlQN/jYBNYIHTpQhkg4+WgF4H9LokeXNSwl7T96YAhtNgX/U14os46pEBGPTmYqtuBtBZdbVGEEYkO6Iggex66dCGl2+cy7KnSseINHTwcGoom/RsMWAOGGz6csVcOnFK4NynKEor0PxEl8wa9XRit5NMuS2iTRV5X3h44ZQPRIp9OqkkWJwV9F7ueu0vaadI9GKSJwlITczJbaPQ0YVWsvrDdvdnQuYlkQyKV7mo2dG7yCRRhdf2/xwcqSAyUFv5g0y5L6NDLaWLjfi1tBjZRgLEqjQw1cLj/kUARKoliMbHiKDZq9yEkxLNgwPMg8AfhHu15nNSSr/wfe/TniBNzSVPPJFWchobTlxskECZhw4QNTY5OG4pDSUFBAYWFhUyd6p1fNU3jl7/8JY8//ni/2yu9GTUCRUZGht/kt1f7E+OVG4JmygsFBzVYCC2LWqh0TToLPNGkMNHvtwOd1IYaZrmLQzEhBhMqAgW1MokY2mUJ4PWHNxKBECq69NAhywnvsdhbYj0YOiMYjv0JKSU18hMmKt874Lp6M9J9PpQQ5AYRToQYT6MsJE7M7fO7lDo67qDnW0UWjfoGWum2X3HLFgQqijASzRSq9GUDunGX6K+SrpzNStG9xbiZNcyMD+6Fss9VQpOniaimM5nBsRTuD7yppnUe0LsRCsEDsh08pJQ0yjU06ZswEsl49VoUTL5twug4F80j43jRLwYRToH6M0q014jRZ6EOMetzvvpDdmiPsVX/BSmcTqvcS5O+gZgAhslS6nhoCxonZYzQufPOO31bG6qqYrPZeO+993jssce4/PLLQ65n1AgUvZlq+OkB12ERwytM9GSVYRj2OHqRld5OSc3g9swPBwaagD2y3WuQCSgYadWK8IhWBCqdsoIw4tGkA4Po/vKypbiprYinVe5Gly6MIprIQcRXcOuttLILgUKt/JxoMbVProHRgC3FPaScJsniZLZrvyVGzEDppQ2wy80YRP+GxFaRRbPcjFvvQBUGnLKZRNWbmVIIQRt7aKOISMYHrUOi+TRCXWOkzrOOvPq7KAyits7k0oDHDamOERcoujiU2op2iinSXyRP/UEfDREMfTwMB2Eijk4qWa/fQYF4cEiGmqowk6/+iAb5Nfv0V5gkbidSTAxYVggFgzw4Bu9HOmeffbbv31lZWVRWDk0qHX0z6BhHHE1yI+HCa8gaIXKpl1+TpBwLQJSc5Fvw7PoWJBrhwquVChOxPgt2u74JycAGnW7ZSrX+EdXyY0AnThxFvDj6oO05B2Kk7SwC0VuI8PsNQ7/CWbssxSNbSVSO8x2z65v8yiSIY4NuX3VhJIpOWeV79h7ZQbNQMMixPfBgeGQrGcr5AYWJw4Fp6i+p0T+hQn+H8eq1Q6pDCEG8WEC8sgC3bOtXyzUS7qpjDJ0xgeIwQJcaTup8C+W3DYFCGN791HZZ5LeN1XPhsylT6ZDl2PVNJGMDurU1JhFLlfyQFE4JOMlIKamVy2mW2zBgZabyKAZl8JHghpve20HDqVYfqC6LSMNDOyZsAX8PhEs24ZFtRCv+eRwUwnxGcx7ZQYcswcBJQWrxEiYScMkmn0DRJNd5PUh6hB0Y6eitow273EKScsKhbkZQhBAkiGNp1f9MmfZvEsSxmJXQ7dp6YxxAUzbG4cWYQHEYoAiVMDk83imjEYkENN+eaKwIri2wiHQsIh2VOpp0r2bDLJKwiHQcsgaJB9FLXe6U9WzS7idJnECucvPYV81+osVU7HIzicI/m6BHdtIqvanKtf3/jhKTkXhok0XE7E/Y1hOjiKRDVlKrf4pEI005e0CVd7xYxF7tOTqpokOW4aGVCcqNIQtTPctlKR2UGAZvnTtUoeRQbHvo0o2KhQZ9Nenq2QOfcIhQFRO5ys0Ue15ns7yfWeIJVDE0m4oxRhdjAsVhQn8q6C7cjiNzIXTIamKV2XgzdYTmtSAdERiE1a+8Lj3Y2UysmO1X1q5vRWAgU71oOJs9LAQyWh3MQnUgYyJMJNCmf93nuEGE45GtIMAuNxEjZtEqdyKRxIiZfVTQHbKCVn0XNfILEpWjSVZODOn6JhHNJPUu7zWU6YPy0OrNUPthqNFfDwU6LqqlN/NjOoEFisNpjshQzqNZ3zImTHyLGPTos9vtzJkzhxkzZjB16lReeOEFANasWcOUKVOYMGGCn5vJJ598wuzZs/ntb3/rO/bggw8yZcoUCgoKmDNnzqACZ3ybqdwautGZS9pp1NeNYGuGDyf1hJGIi0ZkVyjFAajYEkaL3IlKGB7Zjl3fTFgANzSAMOL71Xocanrn5xgM/Y2JgeqzkE4H5X75VLpQMdOkbyRaTPF6bihTsClTA2p3PLIVAxGEk+IXUyAUFGEkVpl9QMIEDO7dGIhQnsehMMo0CCsJ4ljCCN5Xw9kPB4qqmFAw4NLth7opfRiOdWyMvgxaQxEZGckXX3yBxWKhvb2dqVOnct5553Hrrbfy2muvMWXKFBYtWsS5555LQUEBzz//PF999RXXXHMNbW1tbNq0ic8++4yNGzdiNBopLy/Hah19nguHgtQpnSFPGEaiiBKTR7hFB44uPWg4UAmjWW4N2TgydaoDz5bFOKhFl05vnArhIUbM6FNWCo1OvWqYW354MJgx0RshFKLEZOrkCiyk+xn6RSmhj50oZTIe2U6jtu6QjbkD6YeBOJziT2Qpl7BTfxxdagHzcoxkPwwFAxG0yWJimXGom+LHga5jq1evPtS3cFgyaA2Fqqq+tKZOp9Mbpa29HY/Hw7Rp01BVlYsvvph3330X8GbrFEKgqipSSqqrq4mPj8do9Kqq09PTiYmJGcZbOnIZzEQhhIJBHP6Cml1uIkpMpEXuJFpMGfiE/VRttWAUEUSIcV7PDyWFGGWmL7FVF27ZQo38hGw1sLvhaOdAF48UsYQ2vZgmfQN2fRNN+sZ+Y1CA18DVrm+iUV+HLr3ZSOvl1xhF5KDDLw8Xh9MiOpIIIYgTc6iVywP+frj1Q5wyFyn6H0+HggNdx2pqag5l8w9bhrThZrfbmT59Ounp6dx7773U1taSltad9TEtLY2KCm9q6auvvpoFCxYwdepUIiMjOfnkk9mxYwf5+fnccccdFBYWDs+dfAtIyOkbGnX047Wb0HFhEKFPhl190axvx0h0n6ipunTRKndTor9GpnJRwFDRRwIHOiaEUMhWL6WDMqJFATHKDGKUGf2e0yQ3ECFyUbHgppVGfR1uaSdL+e4BteVAOJzfjYUem99/B0q8WESL3Bbwt8OtH1rlbqJF/yHeDxUHso4df/zxh6rZhzVDMsq02Wx888031NTUcN555zFnTnA19dKlS1m6tDu5TGRkJBs2bOCzzz7jk08+4eSTT+af//wnJ598cr/XLCwsJCIigqzZ3tB4bodC5dZwn4ovIceJJcZ//72jyUBdUZivTOqUToxm/8iK9iojHY0GbKlu6orCfPX3pCtXgjFcp6PRQOqUvqFdK7eGY4n14O70ymiBXuySdVYScpzYK41YYj3YUvwl94HuKTbT5WvPkXJPVtmEas9j7559g7qn9OkdmGKaiZVuFFowUkHzviTfPVXWbydySiExRJOm2ID2g3ZPcPDGXmymy9fOA7knS+c8qrdsJn9q7oD3NKkgg22b15NfkEuYWVAvq0gUpyDoOGRjLy67b3sPl+cUpnttVFxbolBiXVhcnpDuqb+xN2lqBto2F0nj5WE9R5hlKo71B/l9SnLB3j5N7cOBrmNj9EXIQBZZg+CWW25h/vz5/P73v2fDhg0APP7443R0dPDjH/94wPMfffRRiouLeeqppwL+3tLSQnR0NM3NzURFRTHP+NyBNHdUkzW7fdDZJQ93SrU3iBKTMIoorCIr5POyZrfzzdq9RIl8QKddluCmhWhRAEjWa3cAMFP9/aA0H6ON4RoTmnSyW3+GCcpNIfeXQ9ZSrL9CpnIRFpE28AkjyOH+bgx38LJGfR1OGkhRTvE7PlA/uGUrjXId7XIfOi4kGnHiKKxiHCZiBp3bpT+csp4K/V1y1KuGrc5Q0GQn67W7fGtGKAx2Hetal55Pf4JwJfD70ql3ckP5HYNqx2hn0FseNTU1tLa2AtDc3MwXX3zBzJkzUVWVTZs2oWkar7/+OmeeGTgL5M6dO9m71ys+SinZsmULmZlHpjp6jIExCRtSShyydtDn1uhf7M8fYSJSycUmZmCX39CorwVglvrEES1MDCeqCPNmE6U8pPKtci/F+ivkKFcdcmFiNNBTiBiOrQ+rGIdDVg9Yzi3bqNE/Y6f2OLu0pynV/4mRSDKVi8hRrmWccjUu7FTob7NN+5U32d5+avTPkFIbUvs06aBI++thG4TrQNex3bt3H8zmjhoGLVCUlJRwzDHHMH36dI455hhuv/12CgoKeOqpp7jkkkuYOHEiS5YsoaAgcArqtrY2LrvsMqZMmcLUqVPRdZ3bb7/9gG9kjMOTDlmBR/ZVp3bRKndjUdKQAxgC9kbHSQtb6BlWUREqOk7q5dfMVB8d838fJB2yDAP+kQmllEipI6XEI9tp0jdSor1Gvf4lE5SbMIkxg+qhciB2FbX65xiJ9jsmpYaHDjpkGU5ZT6esZK/2HEYimajczkT1Vsar1xKrzMYgrCjCgEGEk6ycSI56FZFiIqX6vwBvKPVS/R+4aR3SvRXrL5OoHHPY2i4Nxzo20vz6179GCMGdd97pO+ZwOLj11luJi4sjIiKC888/v4+BaGlpKaeffjoWi4XExETuvfdePJ7Q3PEPlEHbUMybN4+NGzf2OT5//ny2bt064PmzZ89m1apVg73sGHj3EUcbKuEoQYJVSamjyQ6vqjVIMqhgtDV5VbPl+n+JV45CwYREo15fRY567YDJrY4UhnNMxCqz2aL9nCzlUpyyHheNuGnZ37cedOnCpkwjXlk4qO2pg8FofDd6MtiQ6zXyU7KVS3wxRBrlOur0z5EN+TTqbtw0ITCQoV4Y8qKeqV7AJs/97NRqMOwPa98idxIvjhrUvXTIClrkTsar1w3qvFBxyxYq9HfJUi4Z8hbNga5jM2f2zX46nKxdu5bnnnuOadP8M+/edddd/O9//+Nf//oX0dHR3HbbbZx33nl89dVXgDft+Omnn05ycjIrV66kqqqKK664AqPRyMMPPzyibYZhsKEYacZsKI5cGvTVuLCTII6hXe7rkx+iP6SUVMr3qNLfJ67HhJesnOTLDTHG4HHKeur0ldiUqYQRh1FED3zSGCETijYiFKFCl26q9PdppxSJTpSYRLxYdMC5L+z6Zkr01zFgpYNSAMYr1xE7iOR5e7TnSFJOHFT238GgSzfrNK9WO0+9jwgxzu/3odhQDJbB2FCUlZX5tSMsLIywsODa07a2NmbNmsUzzzzDQw89xIwZM3j88cdpbm4mISGBV199lQsuuACAHTt2kJeXx6pVq5g/fz7vv/8+Z5xxBpWVlSQleY3Un332We677z7q6uowmUY28d7hE6d1jAEJZGU9WpFSUquvIEmcgBv7oDUKaVMdpCmnYyWLROVYxqmXM069/FsnTAz3mAgT8aSrZxEhckaVMHEkvRuhoAgjaepZTFRvY5L6PVKUUzGKiAPuB5tSQIH6M58wEUEuRfpf0WVoKnOnbERgHDFhArz3nqN4tR/btUdp1NeP2LUGYn15JIWlUQH/W1/u9QTJyMggOjra99+vfvWrfuu89dZbOf300znpJP/keuvWrcPtdvsdnzx5MpmZmT6t/6pVqygoKPAJEwCnnnoqLS0tIWleDpTRrSf8lnG4Ba05EGrkx0SI8SjCSIdeQZwyd1Dnd/VFknIiDfparOrhpYI/WBxJY+JAGC39MNJRN4ejHxRhYq7hWd/fJdo/6KQSKwNvnbTLfSMqTHQRp8yhWv+QDkrZqz9PjHgGiQ7oA557sAmkoQjG66+/zvr161m7dm2f36qrqzGZTNhsNr/jSUlJVFdX+8r0FCa6fu/6baQZ01CMIo6kr7AGvZBkxRt7RGXwxpOpUzrplNXU6p+Rqpw23M0bNRxJY+JAGOsHLyPRDwnKIkq1f1Krf0GbLEJKnSZ9I2s9N9GuleORHRRrr7JLe5o6+RWRYuKwtyEQeeq93vaJY9mm/Yad2mPs0B47KNceDFFRUX7/BRMoysrKuOOOO3jllVcwmw9NxNkDZUxDMYroHchlNGMVWXhoQ5EGPAw8Cbbq+yjVXydKTMRFE+FhqdToTWSrl42KEOMjxZE0Jg6EsX7wMhL9YBHp5Kq30CTX0aR/Qzn/RUqvV9Y2+RBogW0ZRhIpdarlh6SIJaSr5+CUDRTrrxApcg9aG4abdevWUVtby6xZs3zHNE3jiy++4KmnnuKDDz7A5XJht9v9tBQ1NTUkJycDkJyczJo1a/zq7fIC6SozkowJFGMcEgQqblpwylpixPQBy3toxkEVOcpVmIghUWh0qt9eQWKMMQ4mBmEhQRwDeI0id2lPMtfwLG7ZgoaTWv1zPKINmxLYzXK40fHQpG8kSkxGlxrl+ltEiPEkiePp6Uo+mjjxxBPZvHmz37Grr76ayZMnc99995GRkYHRaOSTTz7h/PPPB7xxnUpLS1mwYAEACxYs4Je//CW1tbUkJiYC8NFHHxEVFUV+/siHQB8TKMY46GjShZNaosREGuTaoAml2mUptfpykpQTaJV7yFIu7mF0GTy2xRhjjDFyCFTixSK2eX5LinIyIGiVu2iTuw+KQLFHe4EOWY6BCDplFU1yAxpOUsVpCKGgydG5/RUZGcnUqVP9jlmtVuLi4nzHr732Wu6++25iY2OJiori9ttvZ8GCBcyfPx+AU045hfz8fC6//HIeeeQRqquruf/++7n11lv7td0YLsYEijEOOm5pp0XuYK3nJtKV84KW65SVgKBeX4lR2LAFSE0+xhhjHFyEUIhWplClLcNJHQ5ZQ7SYimeIQbAGQ4u+A4Egklzq+RLwakzGK9chxJFvEvj73/8eRVE4//zzcTqdnHrqqTzzzDO+31VV5d133+Xmm29mwYIFWK1WrrzySh588MGD0r4xgWIUYa8KHCBqtNFGERJvSN/+vibCRBz79L8CMFd91u+3I6UvDpSxfvAy1g9eDlY/GEUkDqrpkOVkKZewQbuXCEbWhqJTVrNTf5xZ6uPe3D2ymfHiBhShHrHCxPLly/3+NpvNPP300zz99NNBz8nKyuK9994b4ZYFZtQJFA5Zh11uIlk58VA35aDT0TjqHlcfdOmmTS8CwEIWpn5iHThlAwDZyqV9fjsS+mI4GOsHL2P94OVg9kOB+gs2az+hQVsNMGLp6zXpoFz/D7VyOeOUqyjSX8Quv2GW+jiqGBMkDydGnVjXKNdStj/e/LcNW+rg8l0cjkip46EDhXDcNKNg8gkOvWmSG5imPkSCckyf346EvhgOxvrBy1g/eDmY/WAWCcxQf8Mk5W5mq08Rrgy/F0G59jbbtd9iErHMVp+kWv8Iu/yGeLEgqO3VGIeOUSfWpypLSRFLDnUzDgl1RaM/2ZUuXLSwA51OdBx0yhrCRTphxPnKNOkbqZXLUQjD1ON4T46EvhgOxvrBy1g/eDnY/WAU0SMWUXWt5yYAZqtPoggTHbIMHadf0K0xDi9GnYYCOGL3ywYia/bo92yo1P+HhjdT31T1J5hFIhYyfL+7ZSs18jNyldvJVW8OmvznSOiL4eBI7wenbECTzgHLHen9ECpHSj94dO99xDCXNllEmyymSPsrOeo1h7hlY/THt3NlHuOQoEsPtXI5ADYxg3CRikD1ExoMWAkjln36i7ToOw9RS8cYLnTppkJ7e8jnu2kZxtaMMVowKFamq7+mibWU62/RqK9lono7ESLnUDdtjH4YdVseY4xeFGHASg7tFGGXG2nWd/SJrieEwjj1SrZ4fkEV7xPFpEPU2jGGg64kVkPlYEZfHOPwwiRsTFbvxUoGihjZLJljDA9jAsUYBw0pJe14PTzMpOGUtX2+OHTppkj/C9FiKqnK0kPRzDEOEaGk9g5EqAm3NnseQMNJtnIpNmXqwCcMgp5tH+kEYN8mIsX4Q92EMQbBmEAxxkGj59aGgwpixEzUHl8e1fon1OrLSVCOIUU55VA0cYxDxFCFia5zw3RJmsfmW8wD1bcWb7bF3fpTzFWGx7Av0HUW9mjHGGN8mxgTKEYRR4Ilu4IZHQcALWwnWk7FICwAlOn/IlJMIlEcO2A9R0JfDAdj/eDFvdeb16U/weQOXu/+w+P935G28B8p46FEe40okUeMMuNQN2WMQTAmUIxxUIkghxa2AVCk/4VJyp1Eicl4ZAcAE5Qbg/qXSynZp/2VBlYTq8XS6Glksvp9IsWEg9b+MUaG/jQLI0nX9YYqWBxpAsnhQqJyXFCX8TEOX8a8PEYRxvDRn6I5TTkLhW6BYaf+OPs8L7FN+w0Ae7W/BD1XCEEHFahYCQ8PJ44FWMka8TYfzhwJY6InKw12v/9CRYRrIZWbk+nvNeLCgUQedEFmpDhSxkO4SEUVXm2LQ9bQrG87xC0aIxTGNBSjiCMhvHCEko1ZT6Vjv3EmQD0rAYhkCi1swSWbg4bknmq4HwBjs47bMCYPHwljoj/6Eyp6CgF6Y2heAIWlUX5//5P7OZ5rSSNvKM077DgSx0MY8SMWPGuM4WVsRh5FpE4ZnWl5ezPF8ANSxOl9jndSSrZyBcX63ynT3sKub6ZDr8Alm/qUHcm+qNWXs9ZzE2s9N+GS9hG7znBwpIyJodBTi2GaOrR4FZfxKGnkHTFbF6NlPLTLUtwytGcmhDoWZnuUcOSJs2OMCtLVM0nnTEo8/6KWTwCBh1aK9ZcAaGY7tfIzDEQQLxaQpp550NqWqCwmXiyiWH+ZJrmeJHHCQbv2GINnpcFOltJBiSFwVFXo3zbjSBEmRhM6rv9v78zjq6rOvf/de58pJyfzSEICBGIgIYCEKVZBnFCUOtFqrRapvfaqqNW+anuvt/Jii7X0Wu6r9Kq3g61e6tQ6UUAxRVAhKCgyU2QKEDInJ8OZ917vH4ccEkhChpOR9eVzPuTss/beaz177bV+a3oWgqExPCM5jRQUkn5lhOlbZIr5BEQT1RTTZAT99WdpC9CUiH6Ll6qYydIW9tv9JeFFioaBhZxIPTTp1pDH4cOHmT17Nrm5ueTn59PU1MRnn31GXl4eY8aMYcmSJaGwRUVFFBQUsGzZstCxJUuWkJeXR35+PlOmTOHw4cM9T4lk0KIoCmbVQap6BaNNC8k2/Wu/igmJRDL06Wk9Fm6eeuoppk6dSlRUFMnJydxwww3s3996+wGPx8N9991HQkICDoeDm2++mfLy8lZhSkpKuPbaa7Hb7SQnJ/PII48QCAR6Ld4t6ZaguPPOO1myZAl79uxhw4YNWK1W7rvvPv7yl7+wf/9+Vq9ezc6dOwF48cUX+fTTT/nyyy9pbGxk06ZNrF+/nu3bt7Nz507efvttYmNjw5kmiaTP0YUHIUR/R0MikXSSntRjW7ZsCXt8NmzYwH333UdxcTHr1q3D7/dz1VVX0dR0esO3hx56iPfee4833niDDRs2UFpayk033RT6Xdd1rr32Wnw+H5s2beJPf/oTL730Ej/72c/CHt+26PKQx+7duzGbzVxyySUAxMfHU1paSiAQYMKECQDceuutrFq1ivz8fAzDQFEUNE1DCEFZWRmJiYmYzWYAhg8fHsbkDG1Kd8tWezMDzRa14gvilAI0+tax0ECzQ38h7RBE2qFz9LQeO7NXIBysXbu21feXXnqJ5ORktm3bxsyZM3E6nfz+979n5cqVXHZZcF7XH//4R8aNG0dxcTEzZszggw8+YM+ePXz44YekpKQwadIknnzySR577DEWL16MxdK7e6J0uYfiwIEDOBwO5s2bx+TJk1m6dCmlpaWkp6eHwqSnp3PixAkAFi5cSGFhIePHjycqKoorr7ySffv2kZuby4MPPsjWrVvDl5ohjj2+b7qtBgMDzRaJ6kWhdfN9yUCzQ38h7RBE2qFz9LQemz17dqfvVV9f3+rj9Xo7dZ7T6QSCYgdg27Zt+P1+rrjiilCYsWPHkpmZyebNmwHYvHkz+fn5pKSkhMLMmTOH+vp6du/e3ek4d5cu91AEAgE+/vhjtm/fTnJyMldffXWot6Et5s6dy9y5pzd5ioqK4ssvv2T9+vUUFRVx5ZVX8vrrr3PllVd2eN+tW7ficDgYURDs/vF7VEp3R5CW56Z0dwRJWV7sca1fJleticpD1lCYtDw3ZlvrmcV1J824akzEpvmpPGQNXb8lze5szREGrhpTm0uzSndHYI8P4HcHNVpS1tmZ5ui2SJKyvNSVmrHHB4gd5m/1+7nSZLEbWGxiSKUJuveckkd7W91Lx0vZ12BS7FjtartpOrSrkfLYF8nw/hCrEj+g0tSd52SxB48P1OfUV3nPFqUTe8a9BnuaZBlxmi49pxQfHDwrGq0IRz0G8JnmRFN8bZ6jCzfokJGR0er4E088weLFizuMn2EY/OhHP+Ib3/gG48cHN7IrKyvDYrGcNUUgJSWFsrKyUJiWYqL59+bfehtFdHHgd/PmzSxevJj3338fgGXLluFyuXj77bf58ssvAVi+fDkul4t/+7d/O+f1fv3rX3PkyBGee+65Nn+vr68nJiYGp9NJdHQ008wvdCW6Qwp7XABXrVyYA2CL9VJRcxibkopFieWo/he81JKqXkG0ckGH5waEGw0LiqL1UWx7D5kngkg7BJF2CFbkX+gPheqMtuhpPdZcL03WftPuBPLmeBw7dqxVPKxWK1Zrx72Z99xzD2vWrOGTTz4JTQtYuXIlCxcuPKuHY9q0acyePZunn36au+++m6NHj4bSBeByuYiMjGT16tVcc801Hd63p3R5yGPq1KlUVFRQW1uLYRhs3LiRgoICNE1jx44d6LrOq6++yrx5bfsN2L9/PwcPBuWjEIJdu3aRmZnZs1ScJ7Sl/s8XAsKFbnjZG/hPdgb+L75Rb7DfWI6HCnThI1O9lQu0e88pJgBMSsSQEBNwfueJlkg7BJF26Bw9rccOHDjQ6XtFR0e3+pxLTCxatIhVq1axfv36VnMMU1NT8fl81NXVtQpfXl5OampqKMyZ8zuavzeH6U26LGVNJhNLly5l5syZCCG46qqruO6660hMTOQ73/kOHo+HO+64g/z8/DbPb2xsZNGiRdTXB72kFRQUcP/99/csFZIhT4VYT5xyISpmHOQQr0zCTgn79WcI6mKDcdpjOJRR/R1ViUQywAlHPRZuhBDcf//9vPXWW3z00UeMGtW6LCsoKMBsNlNUVMTNN98MBBvoJSUlFBYWAlBYWMgvfvELKioqSE5OBmDdunVER0eTm5sb9jifSZeHPPoaOeRxmhEFTRzdFtnf0ehTfKKWXfovEOioWDBwY+Bj6tSpfP755wBkchsxag5WJRlFad9b4lDkfMwTbTHY7dDSk2dPnHANdjuEg84MefSUrgx5dDYe9957LytXruSdd94hJycndDwmJoaIiOA97rnnHlavXs1LL71EdHR0qDG+aVNwPyRd15k0aRJpaWn86le/oqysjDvuuIMf/OAHLF26tKfJPifn92CbZMCiCw8+amgSx9AJtgYM3FiII039NolKPLnqFdSLf5KoTpO+/iVA+y62+9JTpiH8qEr7E/yEEFSKT5hhjEXDwnr+gGAxCkEx3FYapKfPoc9///d/A3DppZe2Ov7HP/6RO++8E4Df/OY3qKrKzTffjNfrZc6cOfz2t78NhdU0jVWrVnHPPfdQWFhIZGQkCxYsaOWkqzeRgkIyoBDCwC8aOGS8hJtjBGjERBRWkmjiED5qcSijiVSiiVQjz/vty4cqQujUiC+oF3vx0wCAgoLAwEYq8epkHEoWEKyArYYgvYP9OnrSA3BmBe/DjYWzW6UGBo3UsJGXuYhbcBDPJ1oJI/VGPuUvzOP/UMo+oknha4r4B58SSRw6Pt7j18SSQjzDiSGFeNKxE4OCwj4+pjKw6VT6BU1KFEnqxdgZjqK0Pw1OCIGBBx0vTeIIdiUTqxJcgugWZdSKLxAigIGfAI1YiEdTbBj4sJKMhhWbkooJBybF3iWbdZVGcYQIhvXL0uuBQmcGC2w2GytWrGDFihXthhkxYgSrV68OZ9Q6jRzykAwYGsQB9un/iYoVAy9RZNNAcPJTBOnBQlTJkPsADEG8oppGcRgFjYPGCzjIopHDTNB+EaoEAQyhs02/D4AkZSaTRT5JjMJAJ4YUCjO8uIUbk2LG0qKX4Mxty1vSUmB0tIlYE3V8zWdsZzUeGokiiUhiQz0LAA4SUFAI4MOHGwfxuKhDw4wZG5UcJYZkYhlGLrOIIiGYLnSclFPFMRqoopyDeGkCFOzEcCU/REFFIPgbP+c4u0liJKqShYIZH9XUiKBPnxTlMjyUAyoqFhQUopQc6sR2TERhJgoXx0hT56FiRsWMiUgaxSEUVDTFjkdUMNJQqaMcF078eBAEqwoVDQ8NXMLtpJJ9lg27Q5VRTKNxmEx1Pn6lodUz7yqDdchjKCB7KAYRSVne0NrwoUiFsQEAAy/RyljqxT6SlJlkqvMRgKac9vI21G3RES0rPdOYRgJfO3r1fuHubjeEnyaO0CAO4BN1+Kg+9X8t6qkiKUObj4r1rIpFQWWUugCHMobJehTH2cMePiJlTCyHSt9kc6WXCNWGzVFHQOg0NJyaT2CDeo8FDRPX8GArEdCWiChlP8fZQy2leE4NuZmxcgEXcQ0PoqIRRSJWwtNyV9GII4040s4ZNo5hpDCaTPKJEgls02qpF/sI0MiEMZdTdygJGylnzSdKEhcToJ4ATViZh6q09poYp0wK/T1Hn9LmvQ10BILnuJ11vEAUCdiI4huB77Bd82MQAAxULKFhSJ+oxaLEdZimRHUGieoMdOGmwthAhnbjOe0gGXjIHooBSHutJCVC51N/Q99GphcxRICT4n28ohIrCaSppc72XgAAHRdJREFU1yEIsE2/nxz1R+w3lofCRnEBo7TvUWqsYbh6PfYIB35Pt7aiGXR01GpWInQKks52StQdOmrFd4aveJ+veB8/Xm7jKSKIbiVGqo0tVIvPUDBhZzgxah5mYrEQG+q6F8JAEDirsmuPZtu0tMO4cYdahdm7NwshBH7h567ji7ib/yGCqDav56SCfXxMDSeYyBziScdG7wq2nnCm2DPbjLC8Fx3lOQgO76invA58wd+p5SQ+XNQoAoFBvdiPXQk6dPKIMuzKcGKUfKxKIho2zEQxSx/ZSti1RXfErOyh6D9kD0Ufc64XtSPUeB8Xnej++f09sUsXXo4af0HFzAj1NrbpiwCFHPUhKsQGDum/p4atxCh52JVMppqeB8AlTnBQf5Ed+uOMVR/BrERjj/fhLO1dv/T9RXt5ZEpmPYYwUFuMm5fFVVJWYTB7QrAy9eh+bFrrCYFNAS8mRcOqBV/3XXWlxFoiSI+IZZfzJAu3/JklKf9OQUYmLuEiUg226nWho53y19EsNqo4RhTxWAmGEQh8uPHQyAn2ks8VCAzeYxk2ojEHrFixU61G4BIlZKv3dTjurygqCl1/rnnjaqHKcpaYAMi64J+sPbmb/9r7CVMjJnNJksAQdXiEh5ePf04jNUQQRQk7iWMYI5jENG46Z2XX37T1PtvjA2F5LzaZ6josq9QWLowmcy2bTHVEADGnjglhoCgquvCgKTb8wkmafhInZXhpwk0Df+UkI5jEXRkXtxqeamZrSbScoDrIkIKiF+mJeGgLU5oH/UT3N/85Mz59/WLWGttoFIfwUkGjfpB8dQkHjT+w33gGgFguxE4micrFrSaB2ZV0MtT5HDBWcMR4heHiBkYMGzMoBUVHeUIgOMwXeMhBIHDGrqG46XPitDh+nLyI12vf4r2GNfwg/nv869Rg1/gBaxkl9ft5eUsJds3CLmcpFyeNxmfoeHQ/QghMqoohwG6ykGx18L9HP2di7HBizDa8RoDxMWm8638F4RPsdJ7gW9E3oykqGxo/pd5oIM82jkprFddFzeHt6j+QaxtLqjmFUv9J/CJApGrHoTq4xJLNN+zTsKgWhLiEbcdicOHESxP7jE/Qtbs7FBPdteOUzHqcSX4uTDreZtiv6o7z5O41AFwcOQOA31Su4GSgjEncwigm48XFBK4a0L0RLWnv3Y0d5u/xexGOcqv5OTcPe5iVGLLPmEAtMGiIX83yyt+y07ObPNs47EoEfhEgQrVhd9ih8QLGMROtRVXVHD8pLAYeUlCEiXCLh95GJ8AFgXo8NCIwEAhcOIkmCQ8NlGojOlz61h0aOYzAQMOOm1J2GsEtdU04iFIuYJR6Jwf05yg31hGj5Laa8R2j5AHg4SR2ZfDtUNtR/hiWuo+flC0OfZ9gy8OqWKlyVTPVPpk3ne/wTOVzuAw3FlVjo38tGz4VjHIkkjBuJCZh8M30CSRYInnAdimJVgcOsxWL2vr1bvB7KPfU80DObLR2Kvbjrjq21x4jQjPz/cT5lHvq0RQVDZW3dldzdfQVxGoxjLKMJNWUjFVtex6LoihMyaxna0kMdmIo5Nug97wSaLbjlMz6VsdTU6qgnQ0gbeWX8A37EayKhTTTMHa791LpCXA9S9sd+hjI9FZF2t0yrDvxOf38ZpJlGUGBdxKzHN9AFzoWxYJHeGk0Gtll2cun7l8hBBz3n+DxlEc4XDqyVXylsBg4SEHRRQabcGiJgY6CSiPV7GEDxbzRbli7HksyI7mCHxJJHH9XP8Ip9jBMnUOTKMGsRHW42kIIPeiMqsVY+Ejtu5QZRVQbxbhwhY4HaKRWfAGGwKFk0cQRXJQQdWoGeTDM6fA+pRYY1k0r9A0d5ZPK2L9SGDkVBZV/er/mxZq1ZJiDIumty25HFwaHGqvIsMdh08z8hHFnXaPR76Eh4MWbEc9Ii96pOEWZbUSZO/bXMdwey3D76bg7HEmhvx+Y1nJinR840eY19u7NCv0dFBWnx4+7s3zzTFtOyaw/a2jjCG27Ut+7N4v36t9DVVS2ubezz3uAYYGpXM39g0pM9Gal2dMyradOuUZaRjDSEuy9yM8tAYJLKL1GgJlaOlet/ys1vuD7HxBn76Z6USBWiooBghQU7dDXwkEnwN/4OXWUMZJJXMhcLNip4BARRGHCQgoROPETQ9ClagA/JsytJkh1xAG2sIsi8pjdpphIZ1xoaRhAA9X8jaUYShxu4yReKvHo5diVDMqND4lR8lFQUdBwKKOxkYRJiUags09fBgR7FqKVcbjFSRQ0KsVGABTMxCtT8Is6DLwIBAHhxqtUk6JcRpSS3SpuZuV0V/Q+/deM5z+7buRe4Fz5pIpj2IjEQXyoVbai6jAbmj7FY7iJ1qK5NnoO2ZbRxGmxwGE0RSU7KrnD6zrMNhxmG0fCkorw0lzZNwuLM3sTmgXGuWx3+rz6DsN1hHl4MW+VvMdoyyieTH2cWC2Gbcdizn3iGZxrTkFvEw5Pmp2N/5nPqy3am8DbXRs15xkhBM/sL8IQgtdKtgGQ7UiixufivoR/IcWczLFu3UHSFwwpQdHeHIGWCrY/CgU/XhqowkokETjYyMuUsJPpzCeHiwjgZwMvITCwE80ePmIPH5HGWErZd2r9ucFEz0R2sItp3MAW/grANG7iCNup4BD38TJr+C9UNCZxNelntGxzuIgcLgJgN//gOHswYyWSeLKZQSHfDjnPaf5/s8kZOr95ohVAJvMxhE5wvreXJlGClyqajKMEaGSs9giRZKLjwS1O4KWaAA2kKdfiE/VEKiNxqCMxE42JyA7H1g2h4+Fk6PtkbTl+T3gWJ4UrP7RVCD9w4lFq9TpujL6OS2O/icfwsLahiGJX0F+ATbGyPP3pbt2vubJu8LpwHwqv06G2JjaGk44qrO7e26y3nR/GRCWzdc5PWvWadIWWlXd/liEt6cgbaPMKj3CKh3Ce1xbjxh1CFwbrTu7luLuOvxzdSoIlkuWTv0V2VBIptmi2Vh+Fst7fi0LSMwb1stH+fLGrOYaBQTzp1HAcD41EEEMdJ6ngEHWUEcB3yglMIylk4aYRDw24qceHByt2bDjQMOHHi06AeNJR0dAJEMCHHw8giCCGCKKJJ41YUvHiQmBgYKAA7/A0I7mQIwS33o0ikUzysRGFlUgMAtRTiZcmROifQRVHaaQGgFt4MuSoppmeehVsi65cs87YwQEj6FpWwUSWehdxyqR29+zo6zzRVsFqCAO38GAIgxLfMWoNJ37h5w81L/Nw0iLSTKn4hJ/h5rSz0tHWksfm42dWij1d5tlRGnpbVPQHLe3XFdu1l1/7W1h0l3A+7+4KteZ71vnc3PXZyxx31XLtsPHsayhn7rA85gzLJcnWekiq+V5tPbuWz0guG+0/Bl0PRX+9xBUc5nPepo4ynJSfqughiwISyMBGFGUc4ADF3MoviCcdE9bQvIXODEmcC3O+E//OtrtrH+RVIDh0EvSwF1w14KYBH66QIx4bDhQUFFRcOCnjayzY0DCTwOlt5Duq9LvzDAx0fLgBmBaIxIS51T18oo56sR+vqMBHDQGaEBhAcNhklHonZuV0AZOW56Z0d+sXuS/zRv7wSg75jlDUUEaNXstJfxl+4QdAVVQiFBuqomFTrCSbktAxWBh/OxdGTOjwuu0V0O0db84TPRF+W0uiz6pk9u7NGlSi4kSiSnqV0e7vPan4eitfhbOV30xDlouoLvZY9eQ59zSPRGhmbho+ieX7/8EJj5OVF32/zXDnen4tn9HHmrtHcZJ0n0EnKMKNwOAL/o6NKJqoRWBgIYJEMnEQTyVHWcuzocrtTObxSIfX18Jo4vbExJn3s3M6XCSx7YaNJJbRBD3ibTLVcQQ3EJ6XsbmwbG5NvMUvOM4eUhlDcM2ACXOgeYWAglPRiFXGE6tOwEICJuwdDoP0pZi4MKOWr72HKPEfp1av45jvOB9Xq4yxZDHcks4Ya1aHKx7CTcsWWmfyRFeu2bKSa1mID3Rx0VtiIly0Jx56xa5nz+EdsFg1E98dOY0T7jrWlu6h3u8h2mzDFfDx58PFTEsYSeWxMSSYmkL+Uc7FND2GL3o53pK2Oe8FRRUlFPMmWRSc8quv4MeDHw8emnBShgkLdmJwUoGdaKZwPQfZyigu7NO4htvNcncmd3VUca/nD0zgKiLid3JHyZ8AMCtm4kQGKWShE6CWUgL4CeBlJBdyPY8FTxbBj4FOPZU4cGDqwMFRZ23hx8t+PqGcgzThBARmbMSRxmimkMTIds+dlFHD2oYPeapiJ+Nt4xhpGUG2NYubY74ZcvjU15zZ3dtsh674GOnoGbYlLAYDFbEqyXVni4q2xES4hoqa6Y6tekugtWeHgc7DOVdQmJDFZf9Yzo9yLqPC3cDKks/53aHgttxzoi5nbMO/9HMsJefivBEUpexnF0V4cRHHMNLJJY0cEhnBfJ6gkiMU8WIo/DweQUUlliuJJfWs613I3L6MPgBanJ+zF031Ll1p+e/gA3bwAdRAopZAtV6DX/ip4BCqqZEF8bfRZLgwhEGKKZmRlkyceglvlO6kiqMc5PPQsMi3WcIwLmj3Xp2xRSVHeZ3/4DJ+wAy+hf3URk7FvMmWU59/4UXstK5gmiuI31evZJt7OxdHFjLCnEmCFodX+Njj2U+yKZEUc8crMXqDMysv5+gmDrQhrLrbY9Ne5TjQh0Bc1uBclHP1RnRVTHRXWPWXrZrtMFg43FjFg1+8QZ3PzWUpwfd9+f5/hH7/VsyNfDPmGgC2Dp1dB4Ys542gqOQwVZRgJ4YSdvIV7xPAxzhmchX3kkIWGYznVf6daJJwUo5OgB18iI6PWk4SwMtopnE5Q1Mp97QS+pN4nopAJf/0HmR940ZURaUiUAlAWaCCpyuW80zaUpJMiaFzX6v7G58rXxCtRjHDNpmNTZ8C8Do/Y07U5dwed0so7KqSCnbxDwx0ZjMHM2dvOOShkUZqqKeSD3mRMUxnHDNbhZnKDUzgKop5ne0Rz/NA0r+2ma5SfxkNRiNrGtZx0l+GqqjscO8mQAAVhRRTUFCoioraYp6M3x/Jdfz4nH4OwtUL0N6yzPOBZgHhpAn33ra7xLtjjzNtOpDF1GDEEIK/HvuSp/d+wOLx1zLKkUhaRAxPjL+WfftG93f0JN3kvBEUE7maiVyNQOChkSbq0PG3mmNgwc5krqWEnWSQjwJkks8X/J0SdgJwnD39k4BeIBzzDloWvKqikmpOIdWcwkzHRZz0l/H/qp6nVq9DQSHZlMSfa15lqv1CQEFTNJJMCUyzF5BjySbNMoxro6/Cr/t5vOLnvN9QxPsNRWfdM1K102gdzpWZia2Ob276jBeqf0eEYiNOi2VmxBTitFi+8j9Hg9GILgwUBYQATVGp9pfzw+iFQHBlRp3u5IS/lAA6cVoMN8RcxwHv11QEKkOrNrKtWTj1ehQUxlizqG+KDXkaNQg6mLJgw0zHDqR6k94arhjovRTtMdiGb4YyzQLwyfKn+af3IACmqsmo9RmUAWUdnHu+COcVK1awbNkyysrKmDhxIs8++yzTpk3r72h1ivNGUFRRwv/yaKtj97OSg3xGNEnsYB17+Cj0WzFvEEvqqdUPGVzCHdRRRmKLlRDnK50toC+b4OIyvtfq2PodkRzzB/dc8IsABfZJxGqx7HTvZp/nn9ToNVQHasmyjOSQ70irc+c4LifVnEKCKZ5R9lFn3S/bOppFiXejnfKa6DO86Agy7MOxKVZiTTEIIUg2JaEoCoYw2O3Zy2+rfofb8BCrxTDckoYJE197DxGtRZFnG8ccy+XYFFub8ya2NnVcqMnKrHdpFjjFpITtWpLu0ZXJr/+REpw7dUfJ3fyh5mUK7dOYGJHPMHPnn+OZXliHAq+99hoPP/wwzz//PNOnT2f58uXMmTOH/fv3k5zc90OsXWXQ+aH4kfJa6DcnFaf8PzjQCeAgvt2WoUBQzkFMWLERiYFONEls4jW+5O/cwx9R0aillD/zMAC38csOJ+31NeGelNlVOlM5hms9+8bGTfxPzUtthl027EmiR8ZgO27hmP8EB32HOeoroSZQC6d2iDQpGtFaNFbFglWxoCkm6vUG1jX+g3HWHCJVO27hYZz1Ai6OLCTBFN+l+HamIOsNMXGmfbsyGbG34jAQGKyTEcNNX9ohXHns+yX30jwjyqJYmGDLI8sykkzLcC6wZmNVLK122G2Llu+jFxfP8/1B6Ydi+vTpTJ06leeeew4AwzDIyMjg/vvv5yc/+UnY4t9bDDpB8cqI/wn9trb+Q/637vU2z4sgmkhiMdAxMEhnLLtZD4CFCKZyAyoaBgaH+JyTHGAUBUQQRTIjiSOddMaFddnnQGYgzVRvq6Da69nPUxXPIBB8M/oaanUndbqTEZYMRltGMdKSSbwWd86Cp15vwC/8RGtRmMO8+Vk4GIiVtURyJuEUrHW6k4AIoAudeFMcQggO+g6zz3uAvznfBeAKx6XYVTt2NYJ0cxp21U6cFoNNsRGltW5kuQ03dx9/sE8ExUTtKbR2GrE6Hr7Sf8qxY8daxcNqtWK1nr3E3OfzYbfbefPNN7nhhhtCxxcsWEBdXR3vvPNO2NMRbgaNoHjooYdwOBz889nd2BQbFiW4h4VJMWHGjEkxYVI0fMJHnV7PCX9pcJqcoobG4VNNKVwRdSlew4ddjcCsmLCrEVRWjSSWYVj6cdy7mY4q9u44rekpA6mC8xkBSt1OAoZOYHgcY51BQTAQ/Ay0RV/Y7lwOnc4XpB2C9KUd+uK9C4gAjUYjAaHTZLhw6vVUBCpxGS5q9TrchocmwxWaGwVgUkxsdX/Rq4LC4/EwatQoyso6mvUBDoeDxsbGVseeeOIJFi9efFbY0tJS0tPT2bRpE4WFhaHjjz76KBs2bGDLli1hiXtvMmia37feeismk4m3XvDgFm78IoCCgi6CTqrdhhuv4cMjPHiEF78I0GAE1xnFqNE4jXrKAuW8Uvtau/dI1BL4TfpTfZWkLhMOMTGQBEJXsagmRkYmBL+c3mJkUKepp8hKNIi0Q5C+tEPL9663xIVJMRGrxQKQSEKnzqkO1LDV3buurWw2G4cPH8bn83UYTghxlnv9tnonhgqDRlCMHTuW6Oho9ti2hfW6Qgh8wodbeIhQ+r+HoiPO1UNxPlWsskUaRNohiLRDkP6yQ2fLnr7o1bCrbc9pCDc2mw2bLXx1RmJiIpqmUV5e3up4eXk5qaln+0IaiAwaQdFbKIqCVbFiZeCoxvZeziMpGiOteh/HZmDi1waXA5/eQtohiLRDkIFuh640egbqUGZvYbFYKCgooKioKDSHwjAMioqKWLRoUf9GrpMMOkFxPrXCJRKJ5Hylu2V9Y8ALx8McmT7i4YcfZsGCBUyZMoVp06axfPlympqaWLhwYX9HrVMMOkEhkUgkEslQ5JZbbqGyspKf/exnlJWVMWnSJNauXUtKSs/9rPQFg0ZQ1NcHVz80Brz9HJP+w+XTaAzIIQ+QtmhG2iGItEMQaQdoGuR1xKJFiwbNEMeZDHhBYbFYSE1NJSMjo7+jIpFIJJJBQGpqKhZL+7sVS3qHAe+HAoJrfs+1PEcikUgkEgg2RMO5AkPSOQaFoJBIJBKJRDKw6dhPsUQikUgkEkknkIJCIpFIJBJJj5GCQiKRSCQSSY+RgkIikUgkEkmPkYJCIpFIJBJJj5GCoo+58cYbiYuLY/78+QC4XC6uueYaxo4dS15eHs8++2wobFVVFbNnzyY7O5ubbroJj8cDwPHjx5k1axa33XYbuq7zzjvvcOutt4bOW7RoEVdffXXo++OPP87TTz/dRynsHocPH2b27Nnk5uaSn59PU1MTn332GXl5eYwZM4YlS5aEwhYVFVFQUMCyZcsAeOihh3j++edDv48fP55f/vKXoe8XX3zxoNj6tzOsWrWKnJwcsrOz+d3vfgfAK6+8wuTJk3nllVf6OXbhpyf5AsBkMjFp0qTQ589//nN/JKPL9EY5AXDppZcyduzYkD0eeOCBvk+cZOgiJH3K+vXrxbvvvituvvlmIYQQTU1N4qOPPhJCCNHQ0CBycnLEgQMHhBBC/PjHPxbPPvvsWX8/+uijYu/evWLFihVizZo1ory8XIwYMSJ0j4svvljMmDFDGIYhhBDisssuExs3buyrJHaLmTNnhuJYXV0t/H6/mDJlivjqq69EIBAQ06dPFzt27BBCCPHtb39buN1u8Z3vfEc0NDSI1157TSxYsEAIIYTT6RSTJ08W119/vRBCCJ/PJ+Li4oTP5+uPZIUVv98vsrOzxfHjx0VDQ4O44IILRFVVlbjhhhuEz+cLpXko0ZN8IYQQCQkJ/Rb3ntAb5YQQQsyaNUvs3Lmzr5MjOU+QPRR9zKWXXkpUVFTou91uZ9asWQA4HA5ycnI4efIkAO+++y533HEHALfffjvvvfceENyBTlVVTCYThmGQnJyMpmmcPHkSt9uN2WwmNzeXffv2YRgGX331FVOmTOnjlHae3bt3YzabueSSSwCIj4+noqKCQCDAhAkT0DSNW2+9lVWrVgHB9CuKgqZpCCEoLCxk8+bNAGzZsoW5c+dSUVEBwPbt28nNzcVsNvdP4sJIc8s8PT0dh8PBNddcwwcffIAQAkVRUJSBvdNkV+lpvhjM9EY5IZH0NlJQDCCOHTvGjh07mDx5MgBOp5OYmBgA0tPTOXHiBAD33nsv3//+91m/fj1z5swBCFWqW7dupaCggBkzZrB582Z2795NVlYWERER/ZOoTnDgwAEcDgfz5s1j8uTJLF26lNLSUtLT00NhWqZ/4cKFFBYWMn78eKKiosjIyMDlclFdXU1xcTEzZsxg1KhRHDp0iOLiYi666KL+SlpYac8m8+bNY+rUqdx44439GLvw09N8AVBXV9dqyGP9+vX9kpZw0pNyAmD+/Pkhe7QcHpJIesqA38vjfMHr9XLLLbewbNkyIiMjOww7atQoPvnkk1bHmgVFcnIyM2bMIDs7m2effRZd1yksLOzNqPeYQCDAxx9/zPbt20lOTubqq6/usEdh7ty5zJ07t9WxGTNmUFxczJYtW7j33ns5ePAgmzdvpri4ODQOPVS56667uOuuu/o7GmEnHPkiNjaW7du393JM+46elhMAb775JuPHj++tKErOY2QPxQBACMH3vvc95s6d26ryi4mJwel0AnDixAnS0tLavUZhYWGoQp0xYwZ5eXns2rVrULTQ09PTmTJlChkZGVitVubOnYvL5Qq1tKBz6d+8eTPV1dUkJCQwffr0kD0Gevo7S1paWpdsMtgJR74YSoSjnJBIehMpKAYAP/3pT7Hb7Tz++OOtjl933XW8/PLLQHAm/7x589q9xoQJE9i7dy8lJSWkp6ejaRp2u52ioqIB30MxdepUKioqqK2txTAMNm7cSEFBAZqmsWPHDnRd59VXX+0w/YWFhaxcuZIxY8YAcOGFF7Ju3TqEEKSkpPRVUnqVadOmsWvXLk6cOEFjYyNr1qxp1ZU91AhHvhhKhKOckEh6lf6cEXo+cvnll4vExEQREREh0tPTxcaNGwUgcnNzxcSJE8XEiRPF2rVrhRBCVFRUiJkzZ4rRo0eL66+/Xrhcrg6vPWvWLDF//vzQ98cee0ykp6f3anrCxerVq8X48eNFXl6eeOihh4QQQmzevFnk5uaKrKws8cQTT3R4vsfjERaLRTz33HOhY9OnTxff/e53ezPafc4777wjsrOzxejRo8ULL7zQ39HpdXqaLzRNC71XEydOFM8880wfxLrn9FY5MWvWLJGTkxO6xm233dZXSZKcB8jdRiUSiUQikfQYOeQhkUgkEomkx0hBIZFIJBKJpMdIQSGRSCQSiaTHSEEhkUgkEomkx0hBIZFIJBKJpMdIQSGRSCQSiaTHSEEhkUgkEomkx0hBIZFIJBKJpMdIQSGRSCQSiaTHSEEhkUgkEomkx/x/TekYKlpw+8IAAAAASUVORK5CYII=",
"text/plain": [
- "