-
Notifications
You must be signed in to change notification settings - Fork 1
/
emnlp-single.py
593 lines (524 loc) · 24.1 KB
/
emnlp-single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import re
import sys
import pickle
import argparse
import pdb
import os
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from elasticsearch import Elasticsearch
import imblearn
from sklearn import metrics
from sklearn.svm import SVC, LinearSVC
from sklearn import datasets
from politifactDataloader import Dataset
from logger import logger
import utils
np.random.seed(0)
data_dir = '../data/politifact'
elasticsearch_dir = f'{data_dir}/elasticsearch'
man_dir = '../verdict-annotations'
ranksvm_dir = f'{data_dir}/ranksvm_bs'
bert_scores_dir = f'{data_dir}/bert_score_text_all'
nli_scores_dir = f'{data_dir}/nli_score_text/'
cimsce_embeddings_dir = f'{data_dir}/cimsce'
sbert_embeddings_dir = f'{data_dir}/SBERT.large.embeddings'
TRANSCRIPTS = ['20170803_Trump_WV', '20180612_Trump_Singapore',
'20170822_Trump_phoenix', '20180615_Trump_lawn',
'20180426_Trump_Fox_Friends', '20180628_Trump_NorthDakota',
'20180525_Trump_Naval']
dataset = Dataset(data_dir)
verifiedClaims = dataset.verified_claims
print(verifiedClaims)
load = True
# elasticesearch default params
elasticsearch_top_n = 100
elasticsearch_measure = 'vclaim'
threshs_MAPs = [1, 3]
top_n=1
def load_predictions(fpath):
scores = []
with open(fpath) as f:
for line in tqdm(f.readlines()):
scores.append(float(line))
return np.array(scores)
def dump_svmlight(X, y, qid, out_fpath):
y = np.squeeze(y)
X = np.squeeze(X)
qid = np.squeeze(qid)
print('dumping', y.shape, X.shape, qid.shape, out_fpath)
datasets.dump_svmlight_file(X, y, out_fpath, zero_based=False, query_id=qid)
def get_labels(transcript, man_annotation):
labels = np.zeros(len(transcript))
for i, row in man_annotation.iterrows():
if not row.verdict in ['unknown', 'repeated', 'not-claim']:
labels[row.line_number-1] = 1
return labels
def load_input(elasticsearch_transcript, sbert_transcript, verifiedClaims):
elasticsearch_scores = []
for measure in ['vclaim', 'title', 'text']:
idx = elasticsearch_transcript[measure][0].astype('int')
small_scores = elasticsearch_transcript[measure][1]
scores = np.zeros((len(small_scores), len(verifiedClaims)))
for sent_idx, (vclaim_idxs, vclaim_scores) in enumerate(zip(idx, small_scores)):
scores[sent_idx][vclaim_idxs] = vclaim_scores
elasticsearch_scores.append(np.expand_dims(scores, axis=2))
print(elasticsearch_scores[-1].shape)
print(sbert_transcript.shape)
return np.concatenate(elasticsearch_scores + [sbert_transcript], axis=2)
def get_map(predictions, labels):
predictions = predictions.squeeze()
order = np.argsort(predictions)[::-1]
predictions = predictions[order]
labels = labels.squeeze()[order]
total = labels.sum()
cur = 0
score = 0
for rank, (p, l) in enumerate(zip(predictions, labels)):
if total == cur:
break
if l:
cur += 1
score += cur/(rank+1)
return score/total
def get_map_n(predictions, labels, vclaim_scores, vclaims_labels, threshs, n=0):
results = []
predictions = predictions.squeeze()
order = np.argsort(predictions)[::-1]
predictions = predictions[order]
labels = labels.squeeze()[order]
vclaims_labels = vclaims_labels.squeeze()[order]
vclaim_scores = vclaim_scores.squeeze()[order]
total = labels.sum()
for thresh in threshs:
cur = 0
cur2 = 0
score = 0
for rank, (p, l, vp, vl) in enumerate(zip(predictions, labels, vclaim_scores, vclaims_labels)):
if total == cur2:
break
if l:
order = np.argsort(vp)[::-1]
vl = vl[order]
if sum(vl[:thresh]):
cur += 1
score += cur/(rank+1)
else:
cur += n
score += cur/(rank+1)
cur2 += 1
results.append(score/total)
return results
def get_map_harsh(predictions, labels, vclaim_scores, vclaims_labels, threshs):
results = []
predictions = predictions.squeeze()
order = np.argsort(predictions)[::-1]
predictions = predictions[order]
labels = labels.squeeze()[order]
vclaims_labels = vclaims_labels.squeeze()[order]
vclaim_scores = vclaim_scores.squeeze()[order]
total = labels.sum()
for thresh in threshs:
cur = 0
cur2 = 0
score = 0
for rank, (p, l, vp, vl) in enumerate(zip(predictions, labels, vclaim_scores, vclaims_labels)):
if total == cur2:
break
order = np.argsort(vp)[::-1]
vl = vl[order]
if l and sum(vl[:thresh]):
cur += 1
score += cur/(rank+1)
if l:
cur2 += 1
results.append(score/total)
return results
def compute_MAP(labels, scores, top_k=-1):
if len(labels) != len(scores):
logger.error(
"Failed computing MAP because leght of labels (%d) and scores (%d) are different"%(len(labels), len(scores)))
return -1
if top_k < 0 or top_k > labels.shape[1]:
top_k = labels.shape[1]
average_precision_scores = []
for i, (label, score) in enumerate(zip(labels, scores)):
sorted_indices = score.argsort()[::-1]
score = score[sorted_indices]
label = label[sorted_indices]
label = label.astype(int)
score[top_k:] = 0
if sum(label) == 0:
logger.error("Found something when computing MAP no labels (%d)"%sum(label))
average_precision_score = 0
else:
average_precision_score = metrics.average_precision_score(label, score)
average_precision_scores.append(average_precision_score)
return np.mean(average_precision_scores), average_precision_scores
def get_map_inner(predictions, labels, vclaim_scores, vclaims_labels):
p = vclaim_scores[np.where(labels)[0]]
l = vclaims_labels[np.where(labels)[0]]
return compute_MAP(l, p)[0]
def evaluate(predictions, labels, vclaim_scores, vclaims_labels):
inner_map = get_map_inner(predictions, labels, vclaim_scores, vclaims_labels)
MAP = get_map(predictions, labels)
MAP_1 = get_map_n(predictions, labels, vclaim_scores, vclaims_labels, threshs_MAPs, n=0)
MAP_0_5 = get_map_n(predictions, labels, vclaim_scores, vclaims_labels, threshs_MAPs, n=0.5)
MAP_harsh = get_map_harsh(predictions, labels, vclaim_scores, vclaims_labels, threshs_MAPs)
return MAP, MAP_1, MAP_0_5, MAP_harsh, inner_map
def get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript, measure=elasticsearch_measure, esearch_top_n = elasticsearch_top_n):
return elasticsearch_transcript[measure][0][:, :esearch_top_n].astype('int')
def load_input(elasticsearch_transcript, svm_preds, verifiedClaims):
vclaim_seleced_idxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
# svm_preds = svm_preds.reshape((-1, 100))
scores = np.zeros((len(vclaim_seleced_idxs), len(verifiedClaims)))
for i, (svm_pred, idx) in enumerate(zip(svm_preds, vclaim_seleced_idxs)):
scores[i][idx[:len(svm_pred)]] = svm_pred
return np.expand_dims(scores, 2)
def load_transcript_scores(transcript_name, scores_path, scores_file_ext, with_pickle=True):
transcript_scores_path = os.path.join(scores_path, transcript_name+scores_file_ext)
if not os.path.exists(transcript_scores_path):
logger.error(f'Missing scores for {transcript_name} in {transcript_scores_path}')
exit()
scores = np.load(transcript_scores_path, allow_pickle=with_pickle)
return scores
def get_bert_scores(transcript_name, elasticsearch_transcript, verifiedClaims):
bert_scores = load_transcript_scores(transcript_name, bert_scores_dir, '.npz')
bert_scores_f1 = bert_scores['f1']
print(bert_scores_f1.shape)
vclaim_selected_indxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
scores = np.zeros((len(bert_scores), 100))
for i, (score, idx) in enumerate(zip(bert_scores_f1, vclaim_selected_indxs)):
scores[i] = score[idx]
input = load_input(elasticsearch_transcript, scores, verifiedClaims)
bert_scores_f1 = np.expand_dims(bert_scores_f1, axis=2)
print('bert_scores_f1 scores shape: ', input.shape)
return input
# def get_bert_scores(transcript_name, elasticsearch_transcript, verifiedClaims):
# bert_scores = load_transcript_scores(transcript_name, bert_scores_dir, '.npz')
# bert_scores_f1 = bert_scores['f1']
# input = load_input(elasticsearch_transcript, bert_scores_f1, verifiedClaims)
# return input
def get_elsaticserch(transcript_name, elasticsearch_transcript, verifiedClaims):
elasticsearch_transcript = load_transcript_scores(transcript_name, elasticsearch_dir, '.npz')
scores = []
for measure in ['vclaim', 'title', 'text']:
if measure == 'all':
pass
idx = elasticsearch_transcript[measure][0].astype('int')
small_scores = elasticsearch_transcript[measure][1]
score = np.zeros((len(small_scores), len(verifiedClaims)))
for sent_idx, (vclaim_idxs, vclaim_scores) in enumerate(zip(idx, small_scores)):
score[sent_idx][vclaim_idxs] = vclaim_scores
score = np.expand_dims(score, axis=2)
print('elasticsearch scores shape: ', measure, score.shape)
scores.append(score)
return np.concatenate(scores, axis=2)
def get_nli_scores(transcript_name, elasticsearch_transcript, verifiedClaims):
nli_scores = load_transcript_scores(transcript_name, nli_scores_dir, '.npz')
nli_scores = nli_scores['scores']
nli_scores_dim = 3
vclaim_selected_indxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
scores = np.zeros((len(vclaim_selected_indxs), len(verifiedClaims), nli_scores_dim))
for i, (sentence_scores, claim_indxs) in enumerate(zip(nli_scores, vclaim_selected_indxs)):
scores[i][claim_indxs] = sentence_scores
print('NLI scores shape: ', scores.shape)
return scores
def get_cimsce_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims):
vclaim_cimsce_embeddings_path = os.path.join(cimsce_embeddings_dir, 'vclaim.npy')
vclaim_title_cimsce_embeddings_path = os.path.join(cimsce_embeddings_dir, 'vclaim.title.npy')
if not os.path.exists(vclaim_cimsce_embeddings_path):
logger.error(f'Missing cimsce vclaim embeddings in {vclaim_cimsce_embeddings_path}')
if not os.path.exists(vclaim_title_cimsce_embeddings_path):
logger.error(f'Missing cimsce vclaim titile embeddings in {vclaim_title_cimsce_embeddings_path}')
transcript_cimsce_embeddings_dir = os.path.join(cimsce_embeddings_dir, 'transcripts')
cimsce_transcript_embeddings = load_transcript_scores(transcript_name, transcript_cimsce_embeddings_dir, '.npy')
cimsce_vclaims_embeddings = np.load(vclaim_cimsce_embeddings_path, allow_pickle=True)
cimsce_vclaim_title_embeddings = np.load(vclaim_title_cimsce_embeddings_path, allow_pickle=True)
cimsce_scores = []
vclaim_selected_indxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
for claim_embeddings in [cimsce_vclaims_embeddings, cimsce_vclaim_title_embeddings]:
scores = np.zeros((len(cimsce_transcript_embeddings), len(verifiedClaims)))
for i, (sentence_embeddings, claim_indxs) in enumerate(zip(cimsce_transcript_embeddings, vclaim_selected_indxs)):
scores[i][claim_indxs] = metrics.pairwise.cosine_similarity([sentence_embeddings], claim_embeddings[claim_indxs])
scores = np.expand_dims(scores, axis=2)
print('Cimsce shape:', scores.shape)
cimsce_scores.append(scores)
return np.concatenate(cimsce_scores, axis=2)
def get_cimsce_text_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims, top_k=4):
transcript_cimsce_embeddings_dir = os.path.join(cimsce_embeddings_dir, 'transcripts')
cimsce_transcript_embeddings = load_transcript_scores(transcript_name, transcript_cimsce_embeddings_dir, '.npy')
vclaim_text_embeddings_path = os.path.join(cimsce_embeddings_dir, 'vclaim.text.npy')
if not os.path.exists(vclaim_text_embeddings_path):
logger.error(f'Missing cimsce vclaim embeddings in {vclaim_text_embeddings_path}')
exit()
sbert_vclaims_text = np.load(vclaim_text_embeddings_path, allow_pickle=True)
rerank_transcript = []
sbert_vclaims_text_scores = np.zeros((len(cimsce_transcript_embeddings), top_k, len(verifiedClaims)))
print(sbert_vclaims_text.shape, sbert_vclaims_text_scores.shape, cimsce_transcript_embeddings.shape)
for vclaim_id, sbert_embeddings in enumerate(tqdm(sbert_vclaims_text)):
if not len(sbert_embeddings):
continue
# sbert_embeddings = sbert_embeddings.squeeze()
vclaim_text_score = metrics.pairwise.cosine_similarity(cimsce_transcript_embeddings, sbert_embeddings)
vclaim_text_score = np.sort(vclaim_text_score)
n = min(top_k, len(sbert_embeddings))
sbert_vclaims_text_scores[:, :n, vclaim_id] = vclaim_text_score[:, -n:]
sbert_vclaims_text_scores = np.transpose(sbert_vclaims_text_scores, (0, 2, 1))
print('Cimsce text shape:', sbert_vclaims_text_scores.shape)
return sbert_vclaims_text_scores
def get_sbert_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims):
transcript_sbert_embeddings = load_transcript_scores(transcript_name, sbert_embeddings_dir, '.npy')
vclaim_embeddings_path = os.path.join(data_dir, 'vclaim.npy')
vclaim_title_embeddings_path = os.path.join(data_dir, 'vclaim.title.npy')
if not os.path.exists(vclaim_embeddings_path):
logger.error(f'Missing sbert vclaim embeddings in {vclaim_embeddings_path}')
exit()
if not os.path.exists(vclaim_title_embeddings_path):
logger.error(f'Missing sbert vclaim title embeddings in {vclaim_title_embeddings_path}')
exit()
vclaim_embeddings = np.load(vclaim_embeddings_path, allow_pickle=True)
vclaim_title_embeddings = np.load(vclaim_title_embeddings_path, allow_pickle=True)
vclaim_selected_indxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
sbert_scores = []
for claim_embeddings in [vclaim_embeddings, vclaim_title_embeddings]:
scores = np.zeros((len(transcript_sbert_embeddings), len(verifiedClaims)))
for i, (sentence_embeddings, claim_indxs) in enumerate(zip(transcript_sbert_embeddings, vclaim_selected_indxs)):
scores[i][claim_indxs] = metrics.pairwise.cosine_similarity([sentence_embeddings], claim_embeddings[claim_indxs])
scores = np.expand_dims(scores, axis=2)
print('Sbert shape:', scores.shape)
sbert_scores.append(scores)
return np.concatenate(sbert_scores, axis=2)
def get_sbert_text_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims, top_k=4):
transcript_sbert_embeddings = load_transcript_scores(transcript_name, sbert_embeddings_dir, '.npy')
vclaim_text_embeddings_path = os.path.join(data_dir, 'vclaim.text.npy')
if not os.path.exists(vclaim_text_embeddings_path):
logger.error(f'Missing sbert vclaim embeddings in {vclaim_text_embeddings_path}')
exit()
sbert_vclaims_text = np.load(vclaim_text_embeddings_path, allow_pickle=True)
sbert_vclaims_text_scores = np.zeros((len(transcript_sbert_embeddings), top_k, len(verifiedClaims)))
for vclaim_id, sbert_embeddings in enumerate(tqdm(sbert_vclaims_text)):
if not len(sbert_embeddings):
continue
# sbert_embeddings = sbert_embeddings.squeeze()
vclaim_text_score = metrics.pairwise.cosine_similarity(transcript_sbert_embeddings, sbert_embeddings)
vclaim_text_score = np.sort(vclaim_text_score)
n = min(top_k, len(sbert_embeddings))
sbert_vclaims_text_scores[:, :n, vclaim_id] = vclaim_text_score[:, -n:]
sbert_vclaims_text_scores = np.transpose(sbert_vclaims_text_scores, (0, 2, 1))
print('Sbert text shape:', sbert_vclaims_text_scores.shape)
return sbert_vclaims_text_scores
def get_label_input_features(transcript_name, elasticsearch_transcript, verifiedClaims):
transcript = dataset.transcripts[transcript_name]
vclaim_labels = []
for i, row in verifiedClaims.iterrows():
s = re.sub(r'[^a-zA-Z ]+', '', row.truth_meter)
if s.lower().replace(' ', '') == 'true':
vclaim_labels.append(5)
elif s.lower().replace(' ', '') == 'mostlytrue':
vclaim_labels.append(4)
elif s.lower().replace(' ', '') == 'halftrue':
vclaim_labels.append(3)
elif s.lower().replace(' ', '') == 'mostlyfalse':
vclaim_labels.append(2)
elif s.lower().replace(' ', '') == 'false':
vclaim_labels.append(1)
elif s.lower().replace(' ', '') == 'pantsonfire':
vclaim_labels.append(0)
else:
vclaim_labels.append(-1)
vclaim_labels = np.array(vclaim_labels).reshape((1, -1))
scores = []
for i in range(len(transcript)):
scores.append(vclaim_labels)
scores = np.concatenate(scores, axis=0)
print('label shape:', scores.shape)
return np.expand_dims(scores, axis=2)
def get_label_hot_input_features(transcript_name, elasticsearch_transcript, verifiedClaims):
transcript = dataset.transcripts[transcript_name]
vclaim_labels = []
for i, row in verifiedClaims.iterrows():
s = re.sub(r'[^a-zA-Z ]+', '', row.truth_meter)
if s.lower().replace(' ', '') == 'true':
vclaim_labels.append([0, 0, 0, 0, 0, 1])
elif s.lower().replace(' ', '') == 'mostlytrue':
vclaim_labels.append([0, 0, 0, 0, 1, 0])
elif s.lower().replace(' ', '') == 'halftrue':
vclaim_labels.append([0, 0, 0, 1, 0, 0])
elif s.lower().replace(' ', '') == 'mostlyfalse':
vclaim_labels.append([0, 0, 1, 0, 0, 0])
elif s.lower().replace(' ', '') == 'false':
vclaim_labels.append([0, 1, 0, 0, 0, 0])
elif s.lower().replace(' ', '') == 'pantsonfire':
vclaim_labels.append([1, 0, 0, 0, 0, 0])
else:
vclaim_labels.append([0, 0, 0, 0, 0, 0])
vclaim_labels = np.array(vclaim_labels).reshape((1, len(verifiedClaims), -1))
scores = []
for i in range(len(transcript)):
scores.append(vclaim_labels)
scores = np.concatenate(scores, axis=0)
print('hot label shape:', scores.shape)
return scores
def get_label_multi_hot_input_features(transcript_name, elasticsearch_transcript, verifiedClaims):
transcript = dataset.transcripts[transcript_name]
vclaim_labels = []
for i, row in verifiedClaims.iterrows():
s = re.sub(r'[^a-zA-Z ]+', '', row.truth_meter)
if s.lower().replace(' ', '') == 'true':
vclaim_labels.append([1, 1, 1, 1, 1, 1])
elif s.lower().replace(' ', '') == 'mostlytrue':
vclaim_labels.append([1, 1, 1, 1, 1, 0])
elif s.lower().replace(' ', '') == 'halftrue':
vclaim_labels.append([1, 1, 1, 1, 0, 0])
elif s.lower().replace(' ', '') == 'mostlyfalse':
vclaim_labels.append([1, 1, 1, 0, 0, 0])
elif s.lower().replace(' ', '') == 'false':
vclaim_labels.append([1, 1, 0, 0, 0, 0])
elif s.lower().replace(' ', '') == 'pantsonfire':
vclaim_labels.append([1, 0, 0, 0, 0, 0])
else:
vclaim_labels.append([0, 0, 0, 0, 0, 0])
vclaim_labels = np.array(vclaim_labels).reshape((1, len(verifiedClaims), -1))
scores = []
for i in range(len(transcript)):
scores.append(vclaim_labels)
scores = np.concatenate(scores, axis=0)
print('multi-hot label shape:', scores.shape)
return scores
def get_label_halftrue_input_features(transcript_name, elasticsearch_transcript, verifiedClaims):
transcript = dataset.transcripts[transcript_name]
vclaim_labels = []
for i, row in verifiedClaims.iterrows():
s = re.sub(r'[^a-zA-Z ]+', '', row.truth_meter)
if s.lower().replace(' ', '') == 'halftrue':
vclaim_labels.append(1)
else:
vclaim_labels.append(0)
vclaim_labels = np.array(vclaim_labels).reshape((1, -1))
scores = []
for i in range(len(transcript)):
scores.append(vclaim_labels)
scores = np.concatenate(scores, axis=0)
print('label shape:', scores.shape)
return np.expand_dims(scores, axis=2)
input = []
labels = []
vclaim_labels = []
elasticsearch_idxs = []
for i, transcript_name in enumerate(TRANSCRIPTS):
transcript = dataset.transcripts[transcript_name]
man_annotation = pd.read_csv(os.path.join(man_dir, transcript_name+'.tsv'),
sep='\t')
elasticsearch_transcript = np.load(os.path.join(elasticsearch_dir, transcript_name+'.npz'), allow_pickle=True)
vclaim_selected_indxs = get_vclaim_indxs_from_elasticsearch(elasticsearch_transcript)
# svm_preds = load_predictions(f'{ranksvm_dir}_{i}/transcript.qid.predict')
X = []
if 'bert-scores' in sys.argv:
# add bert scores
X.append(get_bert_scores(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'nli-scores' in sys.argv:
# add nli scores
X.append(get_nli_scores(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'cimsce' in sys.argv:
# add cimsce embeddings
X.append(get_cimsce_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'cimsce-text' in sys.argv:
# add cimsce vclaim and vclaim titile embeddings
X.append(get_cimsce_text_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'sbert' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_sbert_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'sbert-text' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_sbert_text_embeddings(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'elasticsearch' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_elsaticserch(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'label' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_label_input_features(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'labelhot' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_label_hot_input_features(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'labelmultihot' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_label_multi_hot_input_features(transcript_name, elasticsearch_transcript, verifiedClaims))
if 'labelhalftrue' in sys.argv:
# add sbert vclaim and vclaim titile embeddings
X.append(get_label_halftrue_input_features(transcript_name, elasticsearch_transcript, verifiedClaims))
# concatenating inputs at the end
X = np.concatenate(X, axis=2)
print(transcript_name)
print('End input shape:', X.shape)
input.append(X)
labels.append(get_labels(transcript, man_annotation))
elasticsearch_idxs.append(vclaim_selected_indxs)
for transcript_name in TRANSCRIPTS:
transcript = dataset.transcripts[transcript_name]
l = np.zeros((len(transcript), len(verifiedClaims)))
for i in range(len(transcript)):
kk = transcript.iloc[i].vclaims
kk2 = transcript.iloc[i].vclaims_man
l[i][kk] = 1
l[i][kk2] = 1
vclaim_labels.append(l)
splits = []
for i in range(len(input)):
input_test = [input[i]]
labels_test = [labels[i]]
vclaim_labels_test = [vclaim_labels[i]]
vclaim_elasticsearch_test = [elasticsearch_idxs[i]]
input_train = input[:i] + input[i+1:]
labels_train = labels[:i] + labels[i+1:]
vclaim_labels_train = vclaim_labels[:i] + vclaim_labels[i+1:]
vclaim_elasticsearch_train = elasticsearch_idxs[:i] + elasticsearch_idxs[i+1:]
splits.append((zip(input_train, labels_train, vclaim_labels_train, vclaim_elasticsearch_train), zip(input_test, labels_test, vclaim_labels_test, vclaim_elasticsearch_test)))
def get_input(scores, idxs, top_n=1):
print(scores.shape, idxs.shape)
ss = []
for s, idx in zip(scores, idxs):
ss.append(s[idx[:top_n]].reshape((1, -1)))
ss = np.concatenate(ss, axis=0)
return ss, scores[:, :, 8]
index='bert_top-100'
out = ''
out_MAP = []
out_MAP_0 = [[] for _ in range(len(threshs_MAPs))]
out_MAP_0_5 = [[] for _ in range(len(threshs_MAPs))]
out_MAP_harsh = [[] for _ in range(len(threshs_MAPs))]
out_MAP_inner = []
for i, (train, test) in tqdm(enumerate(splits), total=len(splits)):
for (input, label, vclaim_label, idxs) in test:
predictions = input[:, :, 0]
predictions = np.sort(predictions, axis=1)
predictions = predictions[:, -1]
order = np.argsort(predictions)[::-1]
rank = np.argsort(order)
# print(rank)
print(np.where(rank*label))
vclaim_scores = input[:, :, 0]
MAP, MAP_0, MAP_0_5, MAP_harsh, MAP_inner = evaluate(predictions, label, vclaim_scores, vclaim_label)
out_MAP.append(MAP)
out_MAP_inner.append(MAP_inner)
out += f'{MAP}\t'
out += f'{MAP_inner}\t'
for map_t, out_map_t in zip((MAP_0, MAP_0_5, MAP_harsh), (out_MAP_0, out_MAP_0_5, out_MAP_harsh)):
for ii in range(len(threshs_MAPs)):
out += f'{map_t[ii]}\t'
out_map_t[ii].append(map_t[ii])
out += '\n'
out += f'{np.mean(out_MAP)}\t'
out += f'{np.mean(out_MAP_inner)}\t'
for out_map_t in (out_MAP_0, out_MAP_0_5, out_MAP_harsh):
for ii in range(len(threshs_MAPs)):
out += f'{np.mean(out_map_t[ii])}\t'
out += '\n'
print('='*50)
print(out)
print('='*50)
with open('results-final.tsv', 'a') as f:
f.write(f'single-top-{top_n}-{index}\n')
f.write(out)