-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_climber.py
67 lines (52 loc) · 2.14 KB
/
train_climber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# from gym.gym.envs.box2d.lunar_lander import LunarLander
import argparse
from custom_env.lunar_climber_env import LunarLander
import gym
from stable_baselines.common.vec_env import SubprocVecEnv
from stable_baselines import DQN
from stable_baselines import PPO2
from stable_baselines.common.evaluation import evaluate_policy
import matplotlib.pyplot as plt
from datetime import datetime
import os
from stable_baselines.common.schedules import LinearSchedule, get_schedule_fn
def train(algorithm='dqn', timesteps=2e5):
# env = gym.make('LunarLander-v2') # This uses the library version of the Lunar Lander env.
print('algorithm: ', algorithm)
print('timesteps: ', timesteps)
learning_rate = 0.001
if algorithm.lower() == 'dqn':
env = LunarLander()
model = DQN('MlpPolicy', env, learning_rate=learning_rate,
prioritized_replay=True,
verbose=1)
elif algorithm.lower() == 'ppo2':
n_envs = 4
env = SubprocVecEnv([lambda: LunarLander() for i in range(n_envs)])
schedule = LinearSchedule(int(float(timesteps)), 0.00001, 0.1).value
model = PPO2('MlpPolicy', env, learning_rate=schedule,
verbose=1)
else:
raise RuntimeError("Unknown algorithm. %s" % algorithm)
# mean_reward, std_reward = evaluate_policy(
# model, model.get_env(), n_eval_episodes=10)
# Train the agent
model.learn(total_timesteps=int(float(timesteps)), log_interval=10)
# Save the agent
model.save("trained_models/latest")
now = datetime.now()
dt_string = now.strftime("%Y-%m-%d_%H-%M-%S")
model.save("trained_models/lunar_climber_%s-%s" %
(algorithm.lower(), dt_string))
# #lot training progress
# plt.plot(env.all_rewards)
# plt.ylabel('Reward')
# plt.xlabel('Timesteps')
# plt.savefig('figures/stats-%s.png' % dt_string)
print("Model trained!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--alg", type=str, default='dqn')
parser.add_argument("--steps", type=str, default='2e5')
args = parser.parse_args()
train(args.alg, args.steps)