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Abstract—Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign

correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors,

including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set

registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid

and nonrigid point set registration. We consider the alignment of two point sets as a probability density estimation problem. We fit the

Gaussian mixture model (GMM) centroids (representing the first point set) to the data (the second point set) by maximizing the

likelihood. We force the GMM centroids to move coherently as a group to preserve the topological structure of the point sets. In the

rigid case, we impose the coherence constraint by reparameterization of GMM centroid locations with rigid parameters and derive a

closed form solution of the maximization step of the EM algorithm in arbitrary dimensions. In the nonrigid case, we impose the

coherence constraint by regularizing the displacement field and using the variational calculus to derive the optimal transformation. We

also introduce a fast algorithm that reduces the method computation complexity to linear. We test the CPD algorithm for both rigid and

nonrigid transformations in the presence of noise, outliers, and missing points, where CPD shows accurate results and outperforms

current state-of-the-art methods.

Index Terms—Registration, correspondence, matching, alignment, rigid, nonrigid, point sets, Coherent Point Drift (CPD), Gaussian

mixture model (GMM), coherence, regularization, EM algorithm.
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1 INTRODUCTION

REGISTRATION of point sets is a key component in many
computer vision tasks, including stereo matching,

content-based image retrieval, image registration, and
shape recognition. The goal of point set registration is to
assign correspondences between two sets of points and/or
to recover the transformation that maps one point set to the
other. For example, in stereo matching, in order to recover
depth and infer structure from a pair of stereo images, it is
necessary to first define a set of points in each image and
find the correspondence between them. An example of a
point set registration problem is shown in Fig. 1. The
“points” in a point set are often features extracted from an
image, such as the locations of corners, boundary points, or
salient regions. The points can represent both geometric and
intensity characteristics of an image.

Practical point set registration algorithms should have
several desirable properties: 1) the ability to accurately
model the transformation required to align the point sets
with tractable computational complexity, 2) the ability to
handle possibly high dimensionality of the point sets, and
3) robustness to degradations such as noise, outliers, and
missing points that occur due to imperfect image acquisition
and feature extraction.

The transformation usually falls into two categories:
rigid or nonrigid. A rigid transformation only allows for

translation, rotation, and scaling. The simplest nonrigid
transformation is affine, which also allows anisotropic
scaling and skews. Nonrigid transformation occurs in many
real-world problems, including deformable motion track-
ing, shape recognition, and medical image registration. The
true underlying nonrigid transformation model is often
unknown and challenging to model. Simplistic approxima-
tions of the true nonrigid transformation, including piece-
wise affine and polynomial models, are often inadequate for
correct alignment and can produce erroneous correspon-
dences. Due to the usually large number of transformation
parameters, the nonrigid point set registration methods tend
to be sensitive to noise and outliers and are likely to converge
into local minima. They also tend to have a high computa-
tional complexity. A practical nonrigid point set registration
method should be able to accurately model the nonrigid
transformation with tractable computational complexity.

Multidimensional point sets are common in many real-
world problems. Most current rigid and nonrigid point set
registration algorithms are well suited for 2D and 3D cases,
but their generalizations to higher dimensions are not
always trivial. Furthermore, degradations such as noise,
outliers, and missing points significantly complicate the
problem. Outliers are the points that are incorrectly
extracted from the image; outliers have no correspondences
in the other point set. Missing points are the features that
are not found in the image due to occlusion or inaccurate
feature extraction. A point set registration method should
be robust to these degradations.

We present a robust probabilistic multidimensional point
set registration algorithm for both rigid and nonrigid trans-
forms. We consider the alignment of two point sets as a
probability density estimation problem, where one point set
represents the Gaussian Mixture Model (GMM) centroids
and the other one represents the data points. We fit the GMM
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centroids to the data by maximizing the likelihood. At the
optimum, the point sets become aligned and the correspon-
dence is obtained using the posterior probabilities of the
GMM components. Core to our method is forcing GMM
centroids to move coherently as a group, which preserves the
topological structure of the point sets. We impose the
coherence constraint by explicit reparameterization of
GMM centroid locations (for rigid and affine transforma-
tions) or by regularization of the displacement field (for
smooth nonrigid transformation). We also show how the
computational complexity of the method can be reduced to
linear, which makes it applicable for large data sets. The rest
of the paper is organized as follows: In Section 2, we overview
the current rigid and nonrigid point set registration methods
and state our contributions. In Section 3, we formulate a
probabilistic point set registration framework. In Sections 4
and 5, we describe our algorithms for rigid, affine, and
nonrigid registration cases, and relate them to existing works.
In Section 6, we discuss the computational complexity of the
method and introduce its fast implementation. In Section 7,
we evaluate the performance of our algorithm. Section 8
concludes with some discussions.

2 PREVIOUS WORK

Many algorithms exist for rigid and for nonrigid point set
registration. They aim to recover the correspondence or the
transformation required to align the point sets or both. Many
algorithms involve a dual-step update, iteratively alternat-
ing between the correspondence and the transformation
estimation. Here, we briefly overview the rigid and nonrigid
point set registration methods and state our contributions.

2.1 Rigid Point Set Registration Methods

The Iterative Closest Point (ICP) algorithm, introduced by
Besl and McKay [1] and Zhang [2], is the most popular
method for rigid point set registration due to its simplicity
and low computational complexity. ICP iteratively assigns
correspondences based on the closest distance criterion and
finds the least-squares rigid transformation relating the two
point sets. The algorithm then redetermines the correspon-
dences and continues until it reaches the local minimum.
Many variants of ICP have been proposed that affect all
phases of the algorithm from the selection and matching of
points to the minimization strategy [3], [4]. ICP requires that
the initial position of the two point sets be adequately close.

To overcome the ICP limitations, many probabilistic
methods were developed [5], [6]. These methods use
soft assignment of correspondences that establishes

correspondences between all combinations of points
according to some probability which generalizes the
binary assignment of correspondences in ICP. Among
these methods are the Robust Point Matching (RPM)
algorithm introduced by Gold et al. [7], and its later
variants [5], [8]. In [9], it was shown that, in RPM,
alternating soft assignment of correspondences and trans-
formation is equivalent to the Expectation Maximization
(EM) algorithm for GMM, where one point set is treated as
GMM centroids with equal isotropic covariances and the
other point set is treated as data points. In fact, several rigid
point set methods, including Joshi and Lee [10], Wells [11],
Cross and Hancock [12], Luo and Hancock [6], [13], McNeill
and Vijayakumar [14], explicitly formulate point set regis-
tration as a maximum likelihood (ML) estimation problem
to fit the GMM centroids to the data points. These methods
reparameterize GMM centroids by a set of rigid transfor-
mation parameters (translation and rotation). The EM
algorithm used for optimization of the likelihood function
consists of two steps: E-step to compute the probabilities
and M-step to update the transformation. Common to such
probabilistic methods is the inclusion of an extra distribu-
tion term to account for outliers (e.g., large Gaussian [5] or
uniform distribution [11]) and deterministic annealing on
the Gaussian width to avoid poor local minima. These
probabilistic methods perform better than conventional
ICP, especially in the presence of noise and outliers.

Another class of rigid point set registration methods is
the spectral methods. Scott and Longuet-Higgins [15]
introduced a noniterative algorithm to associate points of
two arbitrary patterns, exploiting some properties of
Gaussian proximity matrix (Gram matrix) of point sets.
The algorithm works well with translation, shearing, and
scaling deformations, but performs poorly with nonrigid
transformations. Li and Hartley showed that correspon-
dence and transformation are two factors of Gram matrices
that can be found iteratively using Newton-Schulz factor-
ization [16]. This method performs well for moderate linear
transformations. In spite of its elegance, the large computa-
tional effort required for spectral methods prohibits its wide
applicability. There are a few other nonspectral methods
worth mentioning. Ho et al. [17] proposed an elegant
noniterative algorithm for 2D affine registration by search-
ing for the roots of the associated polynomials. Unfortu-
nately, this method does not generalize to higher
dimensions. Belongie et al. [18] introduced the “shape
context” descriptor, which incorporates the neighborhood
structure of the point set and thus helps to recover the
correspondence between the point sets.

Our approach to the rigid point set registration is
probabilistic and most closely related to the works of
Rangarajan et al. [5], Wells [11], and Luo and Hancock [13].
Despite extensive work in rigid probabilistic registration,
none of the methods, to the best of our knowledge, provides
a closed form solution to the maximization step (M-step) of
the EM algorithm for a general multidimensional case. The
fact that the rotation matrix should be constrained to be
orthogonal and to have a positive determinant further
complicates its estimation. Rangarajan et al. [5] showed the
solution for the 2D case only, where rotation is parameter-
ized by a single angle. In higher dimensions, the closed
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Fig. 1. The point set registration problem: Given two sets of points,
assign the correspondences and the transformation that maps one point
set to the other.



form solution with Euler angles parameterization is not
feasible. Luo and Hancock [6], [13] find the rotation matrix
through singular value decomposition (SVD). They ignore
some terms of the objective function, which leads to only an
approximate solution. We shall derive the exact closed form
solution (M-step) for the rigid point set registration and
discuss its difference from the related methods in Section 4.

2.2 Nonrigid Point Set Registration Methods

Earlier works on nonrigid point set registration include
Hinton et al. [19], [20], who used the probabilistic GMM
formulation. The GMM centroids are uniformly positioned
along the contour (modeled using splines), which allows for
nonrigid transformations. In practice, the method is applic-
able only to contour-like point sets. One of the most popular
nonrigid point set registration method is by Chui and
Rangarajan [8]. They proposed using Thin Plate Spline
(TPS) [21], [22] parameterization of the transformation,
following RPM, which results in the TPS-RPM method.
Similarly to the rigid case, they use deterministic annealing
and alternate updates for soft assignment and TPS para-
meters estimation. They also showed that TPS-RPM is
equivalent (with several modifications) to EM for GMM [9].
Tsin and Kanade [23] proposed a correlation-based
approach to point set registration, which was later
improved by Jian and Vemuri [24]. The method considers
the registration as an alignment between two distributions,
where each of the point sets represents the GMM centroids.
One of the point sets is parameterized by rigid/affine
parameters (in the rigid/affine case) or TPS (in the nonrigid
case). The transformation parameters are estimated to
minimize the L2 norm between the distributions. These
methods all use explicit TPS parameterization, which is
equivalent to a regularization of second order derivatives of
the transformation [21], [22]. The TPS parameterization
does not exist when the dimension of points is higher than
three, which limits the applicability of such methods.

Huang et al. [25] proposed implicitly embedding the
shape (or point sets in our case) into distance transform
space and aligning them similarly to nonrigid image
registration algorithms. The authors use sum-of-squared-
differences similarity measure between the embedded
spaces and incremental free form deformation (FFD) to
parameterize the transformation. The method performs
well on relatively simple data sets.

Finally, in our previous work, we presented the Coherent
Point Drift (CPD) algorithm [26] for nonrigid point set
registration. The algorithm regularizes the displacement
(velocity) field between the point sets following the motion
coherence theory (MCT) [27], [28]. Using variational
calculus, we obtained that the optimal displacement field
has an elegant kernel form in multiple dimensions. In this
paper, we shall elaborate and analyze the CPD algorithm.
We also extend the general nonrigid registration framework
and show that CPD and TPS-RPM are its special cases.
Among other contributions, we estimate the width of GMM
components without the time-consuming deterministic
annealing and show a fast CPD implementation to reduce
the computational complexity to linear. We shall discuss
and compare our method to the works of Chui and
Rangarajan [8] and Jian and Vemuri [24] in Section 5.

3 GENERAL METHODOLOGY

We consider the alignment of two point sets as a probability

density estimation problem, where one point set represents

the GMM centroids and the other one represents the data

points. At the optimum, two point sets become aligned and

the correspondence is obtained using the maximum of the

GMM posterior probability for a given data point. Core to

our method is to force GMM centroids to move coherently

as a group to preserve the topological structure of the point

sets. Throughout the paper, we use the following notations:

. D—dimension of the point sets,

. N;M—number of points in the point sets,

. XN�D ¼ ðx1; . . . ;xNÞT—the first point set (the data
points),

. YM�D ¼ ðy1; . . . ;yMÞT—the second point set (the
GMM centroids),

. T ðY; �Þ—Transformation T applied to Y, where � is
a set of the transformation parameters,

. I—identity matrix,

. 1—column vector of all ones,

. dðaÞ—diagonal matrix formed from the vector a.

We consider the points in Y as the GMM centroids and the

points in X as the data points generated by the GMM. The

GMM probability density function is

pðxÞ ¼
XMþ1

m¼1

P ðmÞpðxjmÞ; ð1Þ

where pðxjmÞ ¼ 1
ð2��2ÞD=2

exp�
x�ymk k2

2�2 . We also added an

additional uniform distribution pðxjM þ 1Þ ¼ 1
N to the

mixture model to account for noise and outliers. We use

equal isotropic covariances �2 and equal membership

probabilities P ðmÞ ¼ 1
M for all GMM components

(m ¼ 1; . . . ;M). Denoting the weight of the uniform

distribution as w, 0 � w � 1, the mixture model takes

the form

pðxÞ ¼ w 1

N
þ ð1� wÞ

XM
m¼1

1

M
pðxjmÞ: ð2Þ

We reparameterize the GMM centroid locations by a set of

parameters � and estimate them by maximizing the

likelihood or, equivalently, by minimizing the negative

log-likelihood function

Eð�; �2Þ ¼ �
XN
n¼1

log
XMþ1

m¼1

P ðmÞpðxnjmÞ; ð3Þ

where we make the i.i.d. data assumption. We define the

correspondence probability between two points ym and xn
as the posterior probability of the GMM centroid given the

data point: P ðmjxnÞ ¼ P ðmÞpðxnjmÞ=pðxnÞ.
We use the EM algorithm [29], [30] to find � and �2. The

idea of EM is first to guess the values of parameters (“old”

parameter values) and then use the Bayes’ theorem to

compute a posteriori probability distributions PoldðmjxnÞ of

mixture components, which is the expectation or E-step of

the algorithm. The “new” parameter values are then found
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by minimizing the expectation of the complete negative log-
likelihood function [30],

Q ¼ �
XN
n¼1

XMþ1

m¼1

PoldðmjxnÞ logðPnewðmÞpnewðxnjmÞÞ; ð4Þ

with respect to the “new” parameters, which is called the
maximization or M-step of the algorithm. The Q function,
which we call the objective function, is also an upper bound of
the negative log-likelihood function in (3). The EM algo-
rithm proceeds by alternating between E- and M-steps until
convergence. Ignoring the constants independent of � and
�2, we rewrite (4) as

Qð�; �2Þ ¼ 1

2�2

XN
n¼1

XM
m¼1

P oldðmjxnÞkxn � T ðym; �Þk2

þNPD

2
log�2;

ð5Þ

where NP ¼
PN

n¼1

PM
m¼1 P

oldðmjxnÞ � N (with N ¼ NP

only if w ¼ 0) and Pold denotes the posterior probabilities

of GMM components calculated using the previous para-

meter values:

PoldðmjxnÞ ¼
exp�

1
2

xn�T ðym;�oldÞ
�old

�� ��2

PM
k¼1 exp�

1
2

xn�T ðyk;�oldÞ
�old

�� ��2

þ c
; ð6Þ

where c ¼ ð2��2ÞD=2 w
1�w

M
N . Minimizing the function Q, we

necessarily decrease the negative log-likelihood function E
unless it is already at a local minimum. To proceed, we
specify the transformation T for therigid, affine, and
nonrigid point set registration cases separately.

4 RIGID AND AFFINE POINT SET REGISTRATION

For rigid point set registration, we define the transformation
of the GMM centroid locations as T ðym; R; t; sÞ ¼ sRym þ t,
where RD�D is a rotation matrix, tD�1 is a translation vector,
and s is a scaling parameter. The objective function (5) takes
the form:

QðR; t; s; �2Þ ¼ 1

2�2

XM;N

m;n¼1

P oldðmjxnÞ xn � sRym � tk k2

þNPD

2
log�2; s:t: RTR ¼ I; detðRÞ ¼ 1:

ð7Þ

Note that the first term is similar to the one in the absolute
orientation problem [31], [32], which is defined as
min

PN
n¼1 xn � ðsRyn þ tÞk k2 in our notations. Equation (7)

can be seen as a generalized weighted absolute orientation
problem because it includes weighted differences between
all combinations of points. The exact minimization solution
of the objective function (7) is complicated due to the
constraints on R. To obtain the closed form solution, we
shall use Lemma 1 [33].

Lemma 1. Let RD�D be an unknown rotation matrix and AD�D
be a known real square matrix. Let USVT be a Singular Value
Decomposition of A, where UUT ¼ VVT ¼ I and S ¼ dðsiÞ,
with s1 � s2 �; . . . ;� sD � 0. Then, the optimal rotation

matrix R that maximizes trðATRÞ is R ¼ UCVT , where
C ¼ dð1; 1; . . . ; 1; detðUVT ÞÞ.

To apply this lemma, we need to simplify the Q function
to a form equivalent to trðATRÞ. First, we eliminate
translation t from Q. Taking the partial derivative of Q
with respect to t and equating it to zero, we obtain:

t ¼ 1

NP
XTPT1� sR 1

NP
YTP1 ¼ �x � sR�y;

where the matrix P has elements pmn ¼ PoldðmjxnÞ in (6)
and the mean vectors �x and �y are defined as:

�x ¼ EðXÞ ¼ 1

N
XTPT1; �y ¼ EðYÞ ¼ 1

N
YTP1:

Substituting t back into the objective function and rewriting
it in matrix form, we obtain

Q ¼ 1

2�2
½trðX̂TdðPT1ÞX̂Þ � 2strðX̂TPT ŶRT Þ

þ s2trðŶTdðP1ÞŶÞ� þNPD

2
log�2;

ð8Þ

where X̂ ¼ X� 1�Tx and Ŷ ¼ Y� 1�Ty are the centered
point set matrices. We use the fact that trace is invariant
under cyclic matrix permutations and R is orthogonal. We
can rewrite (8) as Q ¼ �c1trððX̂TPT ŶÞTRÞ þ c2, where c1; c2

are constants independent of R and c1 > 0. Thus, mini-
mization of Q with respect to R is equivalent to maximiza-
tion of

max trðATRÞ;A ¼ X̂TPT Ŷ; s:t: RTR ¼ I; detðRÞ ¼ 1:

Now we are ready to use Lemma 1, and the optimal R is in
the form

R ¼ UCVT ;where USVT ¼ svdðX̂TPT ŶÞ ð9Þ

and C ¼ dð1; . . . ; 1; detðUVT ÞÞ. To solve for s and �2, we
equate the corresponding partial derivative of (8) to zero.
Solving for R; s; t; �2 is the M-step of the EM algorithm. We
summarize the rigid point set registration algorithm in Fig. 2.

The algorithm has one free parameter, w (0 � w � 1),
which reflects our assumption on the amount of noise in
the point sets. The solution for the rotation matrix is
general D-dimensional.

Affine point set registration. The affine registration case
is simpler compared to the rigid case because the optimiza-
tion is unconstrained. Affine transformation is defined as
T ðym; R; t; sÞ ¼ Bym þ t, where BD�D is an affine transfor-
mation matrix, tD�1 is the translation vector. The objective
function takes the form:

QðB; t; �2Þ ¼ 1

2�2

XM;N

m;n¼1

P oldðmjxnÞ xn � ðBym þ tÞk k2

þNPD

2
log�2:

ð10Þ

We can directly take the partial derivatives of Q, equate
them to zero, and solve the resulting linear system of
equations. The solution is straightforward and similar to the
rigid case. We summarize the affine point set registration
algorithm in Fig. 3.
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4.1 Related Rigid Point Set Registration Methods

Here, we discuss the probabilistic rigid point set registration
methods most closely related to ours. Rangarajan et al. [5]
presented the RPM method for rigid point set registration.
The method is shown for the 2D case, where the rotation
matrix is parameterized by a single rotation angle, which
allows us to find an explicit update. Such an Euler’s angles
approach is not feasible in multidimensional cases. RPM also
uses deterministic annealing on �2, which requires setting
the starting and stopping criteria as well as the annealing
rate. The EM iterations have to be repeated at each annealing
step, which can be slow. We argue that it is preferable to
estimate �2 instead of using deterministic annealing. The
deterministic annealing helps to overcome poor local
minima, but for the rigid point set registration problem,
the rigid parameterization is a strong constraint that
alleviates the advantages of the deterministic annealing.

Luo and Hancock [13], [34] introduced the rigid point set
registration algorithm that is the most similar to ours. The
authors optimize the objective function intuitively rather
than rigorously, which leads to several assumptions and
approximate minimization. They ignore a few terms of the
objective function [34, (10), (11)], where the last term does
depend on transformation parameters and must not be
ignored. If such optimizations converge, the M-step of the
EM algorithm is only approximate. Among other differences,
we want to mention that the authors use structural editing, a
technique to remove some undesirable points, instead of
using an additional uniform distribution to account for these
points. Some other authors [14] also follow the rigid
parameters estimation steps of Luo and Hancock [34].

5 NONRIGID POINT SET REGISTRATION

Nonrigid point set registration remains a challenging
problem in computer vision. The transformation that aligns
the point sets is assumed to be unknown and nonrigid,
which is a generally broad class of transformations that can
lead to an ill-posed problem. In order to deal with the
problem, we use Tikhonov regularization framework [35],

[36], [37]. We define the transformation as the initial
position plus a displacement function v:

T ðY; vÞ ¼ Yþ vðYÞ: ð11Þ

We regularize the norm of v to enforce the smoothness of
the function [36]. Such an approach is also supported by the
MCT [27], [28], which states that points close to one another
tend to move coherently, and thus, the displacement
function between the point sets should be smooth. This is
mathematically formulated as a regularization on the
displacement (also called velocity) function.

Additing a regularization term to the negative log-

likelihood function, we obtain

fðv; �2Þ ¼ Eðv; �2Þ þ �
2
�ðvÞ; ð12Þ

where E is the negative log-likelihood function (3), �ðvÞ is a

regularization term, and � is a trade-off parameter. Such

regularization is well formulated in the Bayesian approach,

where the regularization term comes from a prior on

displacement field: pðvÞ ¼ exp�
�
2�ðvÞ .

We estimate the displacement function v using varia-
tional calculus. We shall define the regularization term �ðvÞ
in different but equivalent forms and show that the optimal
functional form of v is a linear combination of particular
kernel functions. A particular choice of the regularization
will lead to our nonrigid point set registration method.

5.1 Regularization of the Displacement Function

A norm of v in the Hilbert space HHm is defined as:

vk k2
HHm ¼

Z
IR

Xm
k¼0

@kv

@xk

����
����

2

dx: ð13Þ

Alternatively, we can define the norm in the Reproducing

Kernel Hilbert Space (RKHS) [36], [38] as

vk k2
HHm ¼

Z
IRD

j~vðsÞj2
~GðsÞ

ds; ð14Þ

where G is a unique kernel function associated with the

RKHS and ~G is its Fourier transform. Function ~v indicates
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the Fourier transform of the function v and s is a frequency

domain variable. The Fourier domain norm definition has

been used in the Regularization Theory (RT) [38] to

regularize the smoothness of a function. Regularization

theory defines smoothness as a measure of the “oscillatory”

behavior of a function. Within the class of differentiable

functions, one function is said to be smoother than another if

it oscillates less; in other words, if it has less energy at high

frequency. The high frequency content of a function can be

measured by first high-pass filtering the function, and then

measuring the resulting power. This can be represented by

(14), where ~G represents a symmetric positive definite low-

pass filter, which approaches zero as ksk ! 1. For

convenience, we shall write the regularization term as

�ðvÞ ¼ vk k2
HHm ¼ Lvk k2; ð15Þ

where an operator L “extracts” a part of the function for

regularization, in our case, the high frequency content part

[36], [37].

5.2 Variational Solution

We find the functional form of v using calculus of variation.

Minimization of regularized negative log-likelihood func-

tion in (12) boils down to minimization of the following

objective function (M-step):

Qðv; �2Þ ¼ 1

2�2

XM;N

m;n¼1

P oldðmjxnÞ xn � ðym þ vðymÞÞk k2

þNPD

2
log�2 þ �

2
Lvk k2:

ð16Þ

A function v that minimizes (16) must satisfy the Euler-

Lagrange differential equation

1

�2�

XN
n¼1

XM
m¼1

P oldðmjxnÞðxn � ðym þ vðymÞÞÞ�ðz� ymÞ

¼ L̂LvðzÞ
ð17Þ

for all vectors z, where L̂ is the adjoint operator to L. The

solution to such a partial differential equation can be

written as the integral transformation of its left side with a

Green’s function G of the self-adjoint operator L̂L.

vðzÞ ¼ 1

�2�

XM;N

m;n¼1

P oldðmjxnÞðxn � ðym þ vðymÞÞÞGðz;ymÞ

¼
XM
m¼1

wmGðz;ymÞ;

ð18Þ

where wm ¼ 1
�2�

PN
n¼1 P

oldðmjxnÞðxn � ðym þ vðymÞÞÞ. Note

that this solution is incomplete. In general, the solution also

includes the term  ðzÞ that lies in the null space of L [38],

[39]. Thus, we achieve Lemma 2.

Lemma 2. The optimal displacement function that minimizes

(16) is given by linear combination of the particular kernel

functions centered at the points Y plus the term  ðzÞ in the

null space of L:

vðzÞ ¼
XM
m¼1

wmGðz;ymÞ þ  ðzÞ; ð19Þ

where the kernel function is a Green’s function of the self-
adjoint operator L̂L.

5.3 The Coherent Point Drift Algorithm

We choose the regularization term according to (14):

�ðvÞ ¼
Z

IRD

j~vðsÞj2
~GðsÞ

ds; ð20Þ

where G is a Gaussian (note it is not related to the Gaussian
form of the distribution chosen for the mixture model).
There are several motivations for such a Gaussian choice:
First, the Green’s function (the kernel) corresponding to the
regularization term in (20) is also a Gaussian (and remains a
Gaussian for an arbitrary dimensional case); the Gaussian
kernel is positive definite and the null space term  ðzÞ ¼ 0
[38]. Second, by choosing an appropriately sized Gaussian
function, we have the flexibility to control the range of
filtered frequencies and thus the amount of spatial
smoothness. Third, the choice of the Gaussian makes our
regularization term equivalent to the one in the MCT [28]:

�MCT ðvÞ ¼
Z

IRd

X1
l¼0

	2l

l!2l
DlvðxÞ
�� ��2

dx; ð21Þ

where D is a derivative operator so that D2lv ¼ r2lv and
D2lþ1v ¼ rðr2lvÞ, where r is the gradient operator and r2

is the Laplacian operator.

Lemma 3. The regularization term in (20) with a Gaussian choice
of low-pass filter G is equivalent to the the regularization term
in (21). Both terms represent the norm of the function v, after
applying the operator L, and the corresponding Green’s
function is a Gaussian in both cases [36].

The equivalence of our regularization term with that of
the Motion Coherence Theory implies that we are imposing
motion coherence among the points and thus we call the
nonrigid point set registration method the CPD algorithm.

We can obtain the coefficients wm by evaluating (19) at
ym points

ðGþ ��2dðP1Þ�1ÞW ¼ dðP1Þ�1PX�Y; ð22Þ

where WM�D ¼ ðw1; . . . ;wMÞT is a matrix of coefficients,

GM�M is a kernel matrix with elements gij ¼ Gðyi;yjÞ ¼
e�

1
2k

yi�yj
	 k

2

, and d�1ð�Þ is the inverse diagonal matrix. The

transformed positions of ym are found according to (11) as

T ¼ T ðY;WÞ ¼ YþGW. We obtain �2 by equating the

corresponding derivative of Q to zero

�2 ¼ 1

NPD

XN
n¼1

XM
m¼1

xn � T ðym;WÞk k2

¼ 1

NPD
ðtrðXTdðPT1ÞXÞ � 2trððPXÞTTÞ þ trðTTdðP1ÞTÞÞ:

ð23Þ

We summarize the CPD nonrigid point set registration
algorithm in Fig. 4.
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Analysis. The CPD algorithm includes three free para-
meters: w, �, and 	. Parameter w (0 � w � 1) reflects our
assumption on the amount of noise in the point sets.
Parameters � and 	 both reflect the amount of smoothness
regularization. A discussion on the difference between � and
	 can be found in [27], [28]. Briefly speaking, parameter 	
defines the model of the smoothness regularizer (width of
smoothing Gaussian filter in (20)). Parameter � represents
the trade-off between the goodness of maximum likelihood
fit and regularization.

We note that solution of (22) gives the exact minimum ofQ
(16), if �2 is assumed fixed. As far as we are estimating �2, (22)
and (23) should be solved simultaneously. The nonlinear
dependency of �2 on W and vice versa does not allow for
simultaneous analytical solution. An iterative exact solution
can be obtained by performing a few cyclic iterations on (22)
and (23) within a single EM step. Practically, a single iteration,
given by (22) and (23), decreases theQ function almost to the
exact minimum. Such an iterative procedure, which de-
creases the Q function but not to exact minimum, is often
called the generalized EM algorithm [29], [40].

5.4 Related Nonrigid Point Set Registration
Methods

The CPD algorithm follows our previous work [26] on
nonrigid point set registration. However, previously, we
have used deterministic annealing on �2, whereas here, we
estimate the Gaussian width �2 within ML framework. This
allows us to significantly speedup the algorithm, alleviating
the repeated EM-iterations for every single annealing step.
We have not observed any decrease in accuracy of the method
related to this change. In [26], we used a slightly different
notation for the GMM centroid locations: We called Y0 the
initial centroids position (which we call Y here), and Y for the
final GMM centroid position (which we call T ðYÞ here).

The most relevant nonrigid point set registration algo-
rithm to ours is TPS-RPM, more precisely its GMM formula-
tion [9]. TPS-RPM uses TPS [21], [22] parameterization of the
transformation, which can be obtained by adding the
regularization term that penalizes second order derivatives

of the transformation. For instance, in 2D, such regularization
term is

LTk k2¼
Z Z

@2T
@x2

� �2

þ 2
@2T
@x@y

� �2

þ @2T
@y2

� �2
" #

dxdy: ð24Þ

This term can be equivalently formulated in the Fourier
space as:

LTk k2 ¼
Z

IR2
sk k4j~T ðsÞj2ds; ð25Þ

which is a special case of the Duchon splines [41]. The null
space of such regularization includes affine transformations.
Using the variational approach, we can show that the optimal
transformation T for such regularization is in the form
T ðYÞ ¼ YAþKC, where A is a matrix of affine transforma-
tion coefficients and C is a matrix of nonrigid coefficients. For
a 2D case, matrix KM�M is the kernel matrix with elements
kij ¼ kyi � yjk2 log kyi � yjk. For a 3D case, matrix K has
elements kij ¼ kyi � yjk. For a 4D or higher dimensions, the
TPS kernel solution does not exist [42]. Finally, to link such
regularization to our nonrigid registration framework, we
note that the regularization of the displacement field v,
instead of the transformation itself, is exactly the same
because (24) is invariant under affine transformations, in
other words, LT ðzÞk k2 ¼ Lðzþ vðzÞÞk k2 ¼ LvðzÞk k2. This
means that both CPD and TPS-RPM regularizes the displace-
ment function, but using different regularization terms.

The advantage of CPD regularization (as given by (20) or
(21)) compared to TPS ((24) or (25)) is that it easily
generalizes to N dimensions. Also, we can control the
locality of spatial smoothness by changing the Gaussian
filter width 	, whereas TPS does not have such flexibility.
Among other differences, TPS-RPM approximates the
M-step solution of the EM algorithm [9] for simplicity and
use deterministic annealing on �2.

Finally, Jian and Vemuri [24] consider the registration as
an alignment between the distributions of two point sets,
where separate GMMs are used to model the distribution
for the point sets. One of the point sets is parameterized by
TPS. The transformation parameters are estimated to
minimize the L2 norm between the distributions. In our
case, the CPD method maximizes the likelihood function,
which is equivalent to KL divergence minimization be-
tween two mixture distributions: GMM and a mixture of
delta functions. KL divergence is a more appropriate
similarity measure for the densities than L2 norm because
it weights the error according to its probability.

6 FAST IMPLEMENTATION

Here, we show that CPD computational complexity can be
reduced to a linear up to a multiplicative constant. We use
the fast Gauss transform (FGT) [43] to compute the matrix-
vector products P1, PT1, and PX, which are the bottle-
necks for both rigid and nonrigid cases. We use low-rank
matrix approximation to speedup the solution of the linear
system of equations (22) for the nonrigid case.

The fast Gauss transform. Greengard and Strain [43]
introduced the FGT for fast computation of the sum of
exponentials:
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Fig. 4. The Coherent Point Drift algorithm for nonrigid point set
registration.



fðymÞ ¼
XN
n¼1

zn exp�
1

2�2 xn�ymk k2

; 8ym; m ¼ 1; . . . ;M: ð26Þ

The naive approach takes OðMNÞ operations, while FGT
takes only OðM þNÞ. The basic idea of FGT is to expand
the Gaussians in terms of truncated Hermit expansion and
approximate (26) up to the predefined accuracy. Rewriting
(26) in matrix form, we obtain f ¼ Kz, where z is some
vector and KM�N is a Gaussian affinity matrix with
elements: kmn ¼ exp�

1
2�2 xn�T ðymÞk k2

, which we have already
used in our notations. We simplify the matrix-vector
products P1, PT1, and PX, to the form of Kz and apply
FGT. Matrix P (6) can be partitioned into

P ¼ KdðaÞ; a ¼ 1:=ðKT1þ c1Þ; ð27Þ

where dðaÞ is diagonal matrix with a vector a along the
diagonal. Here, we use Matlab element-wise division (:=)
and element-wise multiplication (: � ) notations. We show
the algorithm to compute the bottleneck matrix-vector
products P1, PT1, and PX using FGT in Fig. 5. We note
that for dimensions higher than three, we can use the
improved fast Gauss transform (IFGT) method [44], which
is a faster alternative to FGT for higher dimensions.

During the final EM iterations, the width of the
Gaussians �2 becomes small. The Hermitian expansion thus
requires many terms to approximate highly multimodal
Gaussian distribution for a given precision. At the final
iterations, the Gaussian becomes very narrow and we can
switch to the truncated Gaussian approximation (set zeros
outside a predefined box).

Low-rank matrix approximation. In the nonrigid case,
we need to solve the linear system (22), which is OðM3Þ
using direct matrix inversion. We note that the left-hand
side matrix of (22) is symmetric and positive definite.

We use low-rank matrix approximation of G, where G is a

Gaussian affinity matrix with elements gij ¼ exp
� 1

2	2kyi�yjk2

.

We approximate the matrix G as

Ĝ ¼ Q�QT ; ð28Þ

where �K�K is a diagonal matrix with K largest eigenvalues
and the matrix QM�K is formed from the corresponding
eigenvectors. Ĝ is the closest K-rank matrix approximation
to G both in L2 and Frobenius norms [45]. To solve the linear
system in (22), we use the Woodbury identity and invert the
first term as

ðQ�QT þ ��2dðP1Þ�1Þ�1 ¼ 1

��2
dðP1Þ

� 1

ð��2Þ2
dðP1ÞQ ��1 þ 1

��2
QTdðP1ÞQ

� ��1

QTdðP1Þ:

ð29Þ

The inside matrix inversion is of OðK3Þ, where K 	M. For
instance, choosing K ¼M1=3 largest eigenvalues, we reduce
the computational complexity to linear. We can precompute
the K largest eigenvalues and eigenvectors of G using
deflation techniques [46]. It requires several iterations with
the matrix-vector product Gz, which can be implemented
explicitly or through FGT.

The low-rank matrix approximation intuitively con-
strains the space of the nonrigid transformations and can
even be desirable to further constrain the nonrigid
transformation. If the number of points is large and well
clustered, then an extremely small percent of eigenvalues
will be sufficient for an accurate approximation.

7 RESULTS

We implemented the algorithm in Matlab and tested it on a
Pentium4 CPU 3 GHz with 4 GB RAM. We implemented the
matrix-vector products in C as a Matlab mex functions to
avoid the storage of P. The code is available at www.bme.
ogi.edu/~myron/matlab/cpd. We shall refer to our method
as CPD both for rigid and nonrigid point set registration
methods presented in this paper. We have also implemented
the matrix-vector products through FGT using the Matlab
FGT implementation by Sebastien Paris [47].

We consider rigid and nonrigid experiments separately
below. We shall always prealign both point sets to zero
mean and unit variance before the registration.

7.1 Rigid Registration Results

We show the CPD rigid registration on several examples, test
the fast CPD implementation, and evaluate its performance in
comparison with LM-ICP [3], which is one of the most
popular robust rigid point set registration methods.

Rigid fish point set registration. Fig. 6 shows several
rigid registration tests on 2D fish point sets. In Fig. 6a, we
deleted nonoverlapping parts in both point sets and set
w ¼ 0:5, where w is a weight of the uniform distribution that
accounts for noise and outliers. In Fig. 6b, we corrupted the
point sets by outliers. We generate outliers randomly from a
normal zero-mean distribution. CPD demonstrates robust
and accurate performance in all examples. Fig. 6c demon-
strates a challenging example, where both point sets have
missing points and are corrupted by outliers. The most
challenging here is that we biased the outliers to the
different sides of fish point sets. We were able to register
such point sets only by fixing the scaling to be constant
(estimating rotation and translation only). CPD demon-
strates accurate and robust registration performance.

We also test the CPD algorithm with respect to different
initializations of point sets. Fig. 10 shows the registration
error under varying degrees of initial rotation when
registering the clean fish point set to itself. CPD performs
well if the angle of initial misalignment is less than
70 degrees, whereas ICP get trapped into a local minima
with rotations beyond 40 degrees. Empirically, CPD is not
sensitive to the initial translation and scaling as these
parameters are compensated after the first iteration.

Rigid bunny point set registration. We test 3D rigid
point sets registration on the Stanford “bunny” data set [48].
We use a subsampled bunny version of 1;889� 3 points. In
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Fig. 5. Matrix-vector products computation through FGT.



Fig. 7a, we have deleted the front and back parts of the

bunny point sets. In Fig. 7b, we have added random outliers

to different sides of the point sets. We set w ¼ 0:7. CPD

registration is accurate and robust in all examples.
We compare the CPD rigid algorithm to the LM-ICP

method [3], a robust version of ICP. Fig. 8 shows the

performance of CPD and LM-ICP with respect to noise in

the point sets. We align the Y point set (blue circles) onto the

X point set (red dots). We set w ¼ 0:5. The known initial

rotation discrepancy between the point sets is 50 degrees.

Figs. 8a and b show the alignment performance when a

random noise is added to the X and Y point set positions,

respectively. We use a norm of the difference between the

true and estimated rotation matrix as an error measure. A few

initial point sets examples with different noise std are shown

in the columns 2, 3, and 4 of Fig. 8. For each level of the noise

stds, we made 25 independent runs. The first column plots

the error values (mean and standard deviation) in the

estimated rotation matrix as a function of noise levels. On

average CPD required 26 iterations (11 sec total), whereas

LM-ICP required 40 iterations (10 sec total). The CPD rigid

algorithm outperforms the robust LM-ICP method, espe-

cially when the noise is present in the X point set.
Fig. 9 shows the performance of CPD and LM-ICP with

respect to the outliers in the point sets. We add different

number of outliers (irrelevant random points) to the point

sets. An examples of such initial point sets are shown in

columns 2, 3, and 4 of Fig. 9 for 600, 1,800, and 3,000 outlier

points added, respectively. Figs. 9a and b show the cases of

outliers present in the X and Y point sets, respectively.
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Fig. 6. Fish data set, rigid registration examples. We align Y (blue circles) onto X (red stars). The columns show the iterative alignment progress.
(a) Registration of the point sets with missing nonoverlapping parts (w ¼ 0:5). (b) Registration of the point sets corrupted by random outliers
(w ¼ 0:5). (c) A challenging rigid registration example, where both point sets are corrupted by outliers and biased to different sides of the point sets.
We have also deleted some parts from both point sets. We set w ¼ 0:8 and fix scaling s ¼ 1. CPD registration is robust and accurate in all
experiments.

Fig. 7. Three-dimensional bunny point set rigid registration examples. We align Y (blue circles) onto X (red dots). The columns show the iterative
alignment progress. We initialized one of the point sets with 50 degree rotation and scaling equaling to 2. (a) Registration of the point sets with
missing points (w ¼ 0:5). (b) A challenging example of CPD rigid registration with missing points, outliers, and noise. CPD shows robust and accurate
registration result in all experiments.



CPD performs well in all experiments, whereas LM-ICP

performance is less accurate.
Fast rigid CPD implementation. We also test the CPD

performance with FGT implementation of the matrix-vector

products. We use four Stanford bunny sets of sizes: 453� 3,

1;889� 3, 8;171� 3, and 35;947� 3. For each of the cases,

we add a small amount of noise and outliers to both point

sets, initialized them with 50 degree rotation and set

w ¼ 0:3. For the FGT parameters, we used “ratio of far

field” ¼ 8, “number of centers” ¼ 80, and “order of

truncation” ¼ 5. Table 1 shows the registration time with

and without FGT. The FGT implementation is significantly

faster. We note that there are several downsides of using the

FGT: 1) FGT requires its own parameter initialization and

2) CPD (with FGT) aligns the point sets to 0.1 degree error

rotation and then starts being unstable. This is because �2

becomes small and the FGT approximation error becomes

significant. At this point, one can either stop (the alignment

already is reasonably accurate) or proceed with ICP or
truncated Gaussian CPD.

7.2 Nonrigid Registration Results

We show CPD nonrigid registration on several examples,
test the fast CPD implementation and evaluate CPD
performance in comparison to TPS-RPM [8], which is one
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Fig. 8. A comparison of CPD and LM-ICP rigid registration performances with respect to (a) noise in the X and (b) the Y point sets. We align Y (blue
circles) onto X (red dots). Columns 2, 3, and 4 show the examples of initial point sets for different random noise stds added to the point set positions.
The first column shows the error in estimating the rotation matrix for CPD (blue) and TPS-RPM (red). CPD outperforms LM-ICP in all cases.

Fig. 9. A comparison of CPD and LM-ICP rigid registration performances with respect to outliers in (a) the X and (b) the Y point sets. We align Y

(blue circles) onto X (red dots). Columns 2, 3, and 4 show the examples of initial point sets with different number of outliers added. The first column
show the error in estimating the rotation matrix. CPD outperforms LM-ICP.

Fig. 10. Registration error with respect to the initial rotation (degrees) of
the fish point set registered to itself. CPD performs well if the angle of
initial misalignment is less than 70 degrees, whereas ICP gets trapped
into a local minima with rotations beyond 40 degrees.



of the best performing nonrigid point set registration
methods. We set � ¼ 2, 	 ¼ 2.

Nonrigid fish point set registration. Fig. 11a shows

nonrigid CPD registration of two fish point sets with clean

data. Fig. 11b is with missing points (w ¼ 0:5). Fig. 11c is

with both point sets are corrupted by outliers (w ¼ 0:5). The

nonrigid CPD registration results are accurate in all

experiments.
We test CPD against TPS-RPM [8] on synthetically

generated 2D fish nonrigid examples with respect to 1) level

of nonrigid deformation, 2) amount of noise in the point sets

locations, and 3) number of outliers. We set w ¼ 0:3 in all

experiments. Since we know the true correspondences, we

use the mean squared distance between the corresponding

points after the registration as an error measure. For each set

of parameters, we have conducted 25 runs. The computa-

tional time of CPD was 3 sec with 31 iterations on average,

whereas TPS-RPM required 12 sec with 79 iterations. Fig. 12a

shows the methods performances with respect to the level of

initial nonrigid deformation between the point sets. To

generate the nonrigid transformation, we parameterize the

point sets domain by a mesh of control points, perturb

the points, and use splines to interpolate the deformation.

The higher level of mesh point perturbations produce the

higher deformation. CPD shows accurate registration

performance and outperforms the TPS-RPM. Fig. 12b shows

the methods performances with respect to the amount of

noise. We add a zero-mean white noise with increasing

levels of stds to the point sets. Both CPD and TPS-RPM show

accurate performances. Fig. 12c shows the methods perfor-

mances with respect to the number of outliers. We add

random outliers to the point sets and plot the registration

error with respect to the ratio of number of outliers to the

number of data points. At most, we have added almost twice

as many outliers as the actual data points. CPD shows robust

registration performance and outperforms the TPS-RPM.
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TABLE 1
The Rigid CPD Registration Time

for Naive (No FGT) and FGT Implementations

The FGT-based implementation is significantly faster.

Fig. 11. Nonrigid CPD registration of 2D fish point sets. (a) Noiseless fish point sets registration (91� 2 points, w ¼ 0). (b) Registration of 2D fish

point set with missing points (w ¼ 0:5). (c) Registration of 2D fish point set in the presence of outliers (w ¼ 0:5). CPD registration is robust and

accurate in all experiments.

Fig. 12. A comparison of CPD and TPS-RPM on the 2D fish point sets with respect to (a) deformation level, (b) noise level, (c) outliers (x-axis is the
ratio of the number of outliers to the number of clean data points). CPD shows more accurate registration performance compared to TPS-RPM,
especially in the presence of outliers and complex nonrigid deformations. (d) Registration error of CPD with respect to the � and 	 parameter
settings. CPD performs well for � in a ½0:1::9� and 	 in ½1:5::3� intervals.



We also evaluate CPD with respect to the values of
parameters � and 	 (Fig. 12d) on the fish data with small
amount of noise and outliers added. CPD performs well for
� in ½0:1::9� and 	 in ½1:5::3� intervals. CPD is more sensitive
to the choice of the parameter 	 because it defines the model
of the nonrigid transformation.

Nonrigid 3D face registration. We show the CPD
performance on 3D face point sets. Fig. 13a shows two 3D
face point sets related through nonrigid deformation.
Fig. 13b shows two 3D face point sets with added outliers
and nonrigid deformation. Nonrigid CPD registration is
accurate in all experiments.

Nonrigid 3D LV point set registration. Finally, we
demonstrate the CPD performance on nonrigid 3D left
ventricle (LV) contours segmented from 3D ultrasound
images, using active contour-based segmentation [49].
Figs. 14a, b, and c show two LV point sets at different time
instances, the registration result, and the displacement field
required for CPD alignment, respectively. The registration
result is accurate.

Fast nonrigid CPD implementation. We test the
computational time of the fast CPD nonrigid implementa-
tion on several subsampled 3D Stanford bunny point sets.
We use FGT of the matrix-vector products, the low-rank
matrix approximations of the kernel matrix, or both. We
applied a moderate nonrigid deformation to the bunny
point sets. The registration time of the nonrigid CPD is
shown in Table 2.

We were unable to run the test without the low-rank
matrix approximation for the largest bunny set (35;947� 3)

because of the large RAM requirements to construct the
kernel matrix G. We used only 100 leading eigenvalues and
eigenvectors in all cases. Table 2 shows that the main
computational bottleneck is in solving the linear system of
equations (22) because the low-rank matrix approximation
alone can reduce the computational time significantly. Both
FGT and low-rank approximations provide further speedup
with only moderate loss of accuracy. We note that almost
60 percent of the time required to complete the CPD
registration using the low-rank matrix approximation was
required to precompute the eigenvalues and eigenvectors of
the kernel matrix G.

8 DISCUSSION AND CONCLUSION

We introduce a probabilistic method for rigid and nonrigid
point set registration, called the Coherent Point Drift
algorithm. We consider the alignment of two point sets as
a probability density estimation, where one point set
represents the Gaussian Mixture Model centroids and the
other represents the data points. We iteratively fit the GMM
centroids by maximizing the likelihood and find the
posterior probabilities of centroids, which provide the
correspondence probability. Core to our method is to force
the GMM centroids to move coherently as a group, which
preserves their topological structure.

Our contribution includes the following aspects: For the
rigid case, we derived the closed form multidimensional
solution (of the M-step of the EM algorithm), which has not
been derived exactly before. For the nonrigid point set
registration, we formulate the motion coherence constraint
and derive a solution of the regularized ML estimation
through the variational approach, which leads to an elegant
kernel form. CPD simultaneously finds both the transfor-
mation and the correspondence between two point sets
without making any prior assumption on the nonrigid
transformation model except that of motion coherence.
Finally, we introduced the fast CPD implementation using
fast Gauss transform and low-rank matrix approximation to
reduce the computational complexity of the method to as
low as linear. On top of the computational advantage, the
low-rank kernel approximation provides more stable solu-
tions in cases where the matrix G is poorly conditioned. To
our best knowledge, CPD is the only method capable of
nonrigid registration of large data sets. Both rigid and
nonrigid CPD registration methods can be applied to
arbitrary dimensional data sets.

We estimate the GMM width, �2, within the ML
formulation. We have not observed any decrease in
performance compared to the deterministic annealing
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Fig. 13. Nonrigid registration of 3D face point sets. (a) Registration of
clean point sets. (b) Registration of point sets with outliers. CPD shows
accurate alignment.

Fig. 14. Nonrigid registration of 3D left ventricle point sets. (a) Two LV
point sets at different time instances (initialization). (b) The registration
result. (c) Displacement field between the corresponding points.

TABLE 2
Registration Time Required for Nonrigid Registration

of 3D Bunny Point Sets

The time shown is when using only FGT of vector-matrix products, only
low-rank matrix approximation of Gaussian kernel matrix, or both.



approach. Estimation �2 allows to reduce the number of free
parameters and, most importantly, to significantly reduce
the number of iterations and the processing time.

We have used an addition uniform distribution to
account for noise and outliers. The weight, w, of this
distribution provides a flexible control over the method
robustness and allows accurate CPD performance, espe-
cially in presence of severe outliers and missing points.

We have tested CPD on various synthetic and real
examples and compare it to LM-ICP (in rigid case) and TPS-
RPM (in nonrigid case). CPD shows robust and accurate
performance with respect to noise, outliers, and missing
points. Our method is of general interest with numerous
computer vision applications. We provide the Matlab code
of the CPD algorithm free for academic research.
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