-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata-plots.Rmd
614 lines (464 loc) · 28.5 KB
/
data-plots.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
---
title: "Homeless in USA"
author: "Felipe Alamos"
date: "February 17, 2019"
output:
html_document:
code_folding: "hide"
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
##Introduction
Homeless people are one of the most vulnerable and marginalized members of society in the United States of America. According to the McKinney -Vento Homeless Assistance Act of 1987, a person is experiencing a homelessness condition whenever she or he is lacking a regular and adequate nighttime residence. It is a particularly harmful state, especially considering that it is usually associated with a variety of other problems in health, education or employment. In the USA, during 2018 there were 552,830 people living in homeless condition.
This portfolio aims to visualize, and hence be able to dimension, the homelessness situation in the USA, in the hope of providing useful information and insights to understand this social phenomenon. Visualizations will consider the number of people in homeless situation (and different homelessness classification) across the different states of the country. In addition, the goal is to provide visual information of other data which may be interesting and possibly associated to this problem, such as resources assigned to emergency housing programs, GDP per state, performance indicators of shelters, etc. The main source of information will be the U.S. Department of Housing and Urban Development (HUD).
We will be mainly using tidyverse library for data manipulation, ggplot2 for visualizations, Simple Features for mapping.
```{r libraries, message=FALSE, warning=FALSE}
library(rmarkdown)
library(tidyverse)
library(plyr)
library(ggplot2)
library(readxl)
library(scales)
library(extrafont)
library(ggrepel)
library(sf)
library(rnaturalearth)
library(GGally)
library(waffle)
library(gridExtra)
library(fiftystater)
library(mapproj)
loadfonts()
#Declaration of color palletes and themes
#Discrete color pallete create in color.adobe.com Inspired by http://colorbrewer2.org/#type=qualitative&scheme=Set1&n=5
disc_cols <- c("#E41A1C","#4276BF","#43BB38","#A73EA3","#FFA600")
#Continuous color pallete created using Chroma.js, using 3 colors of the discrete pallete to generate 5 steps continuous pallete
cont_cols <- c("#43bb38","#b2b524","#ffa600","#f36e16","#e41a1c")
homeless_theme <-
theme(title = element_text(family="Constantia"),
plot.title = element_text(size = 16),
plot.subtitle =element_text(size = 12),
plot.caption = element_text(family="Lucida Fax", face="italic", size=10),
axis.title = element_text(family="Garamond", size=14),
panel.grid = element_line(linetype = 'dashed', colour = "black"),
panel.grid.major = element_line(size = 0.5),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill='white')#,
)
homeless_map_theme <-
homeless_theme %+replace%
theme(
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
panel.spacing = unit(0,"lines"),
plot.margin = unit(c(0,0,0,0),"lines"),
panel.background = element_rect(fill='lightblue'),
complete = TRUE
)
```
## Homelessness in time
A first necessary approach is to quantify the amount of people experiencing homelessness through time. We would like to know if the total amount of homeless has increased, decreased or kept constant during last decade. Same question would be interesting for evolution of sub populations of homeless such as: sheltered and unsheltered, those living in families or alone, etc.
Generally speaking, the total homeless population has had a constant decrease for the last decade. We can observe that from 2012 to 2013 there was a steeper decline. From 2016 to 2018 there has been a slight increase. In addition, the unsheltered population has proportionally decreased more than the sheltered population.
```{r, message=FALSE, fig.align='center', fig.height = 5, fig.width = 10}
#Load data
h_2018 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=2)
h_2017 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=3)
h_2016 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=4)
h_2015 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=5)
h_2014 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=6)
h_2013 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=7)
h_2012 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=8)
h_2011 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=9)
h_2010 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=10)
h_2009 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=11)
h_2008 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=12)
h_2007 <-read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=13)
#Select only useful columns
h_2018<-h_2018 %>% select(1,3,7,8,9,15,25)
h_2017<-h_2017 %>% select(1,3,7,8,9,15,25)
h_2016<-h_2016 %>% select(1,3,7,8,9,15,25)
h_2015<-h_2015 %>% select(1,3,7,8,9,15,25)
h_2014<-h_2014 %>% select(1,3,7,8,9,15,25)
h_2013<-h_2013 %>% select(1,3,7,8,9,15,25)
h_2012<-h_2012 %>% select(1,3,7,8,9,15,25)
h_2011<-h_2011 %>% select(1,3,7,8,9,15,25)
h_2010<-h_2010 %>% select(1,3,7,8,9,15,25)
h_2009<-h_2009 %>% select(1,3,7,8,9,15,25)
h_2008<-h_2008 %>% select(1,3,7,8,9,15,25)
h_2007<-h_2007 %>% select(1,3,7,8,9,15,25)
#Rename column of total number of homeless
names(h_2018) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2017) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2016) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2015) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2014) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2013) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2012) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2011) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2010) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2009) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2008) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
names(h_2007) <- c("State","Total_homeless","Sheltered","Unsheltered","Alone","In_families","Chronic")
#Select only totals, add year and get only total in country
h_2018<- h_2018 %>% mutate(Year = 2018)%>% tail(1)
h_2017<- h_2017 %>% mutate(Year = 2017)%>% tail(1)
h_2016<- h_2016 %>% mutate(Year = 2016)%>% tail(1)
h_2015<- h_2015 %>% mutate(Year = 2015)%>% tail(1)
h_2014<- h_2014 %>% mutate(Year = 2014)%>% tail(1)
h_2013<- h_2013 %>% mutate(Year = 2013)%>% tail(1)
h_2012<- h_2012 %>% mutate(Year = 2012)%>% tail(1)
h_2011<- h_2011 %>% mutate(Year = 2011)%>% tail(1)
h_2010<- h_2010 %>% mutate(Year = 2010)%>% tail(1)
h_2009<- h_2009 %>% mutate(Year = 2009)%>% tail(1)
h_2008<- h_2008 %>% mutate(Year = 2008)%>% tail(1)
h_2007<- h_2007 %>% mutate(Year = 2007)%>% tail(1)
#Merging all data of years in one data frame
all_years <- rbind.fill(h_2018,h_2017,h_2016,h_2015,h_2014,h_2013,h_2012,h_2011,h_2010,h_2009,h_2008,h_2007)
#Change variable type of total_homeless
all_years <- mutate(all_years, Total_homeless = as.numeric(Total_homeless))
all_years <- mutate(all_years, Unsheltered = as.numeric(Unsheltered))
all_years <- mutate(all_years, Alone = as.numeric(Alone))
all_years <- mutate(all_years, In_families = as.numeric(In_families))
all_years <- mutate(all_years, Chronic = as.numeric(Chronic))
all_years <- mutate(all_years, Sheltered = as.numeric(Sheltered))
total_sh_and_unsh <-
all_years %>%
select(2,3,4,8)
colnames(total_sh_and_unsh)[1] <- "Homeless total"
colnames(total_sh_and_unsh)[2] <- "Sheltered homeless"
colnames(total_sh_and_unsh)[3] <- "Unsheltered homeless"
total_sh_and_unsh <- gather(total_sh_and_unsh, key = "Type", value = "Quantity" , 1:3)
#Plotting total n_homeless for different years
homeless_time_plot<-
ggplot(total_sh_and_unsh, aes(x=Year, y=Quantity/1000, group=Type,colour = Type))+
geom_line(linetype = "solid",size=1.5)+
geom_point(size=3)+
scale_y_continuous(name="Number of homeless\n(thousands)",labels=comma)+
scale_x_continuous(breaks = c(2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018))+
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
labs(title = "Decline of total homeless in USA during last decade",
subtitle = "Unsheltered homeless population has shown steeper decline than sheltered", caption = "Source: U.S. Department of Housing and Urban Development (HUD)",x = "Years")+
homeless_theme+
scale_color_manual(values = c(cont_cols[5], cont_cols[1], cont_cols[2]),name = "")+
annotate(geom = "label", x = 2017, y = 505, label = "Slight increase\nin recent years", fontface = "italic", color = "grey22", size = 4)+
annotate(geom = "label", x = 2014.5, y = 630, label = "Significant decrease\nin 2012 (5%)", fontface = "italic", color = "grey22", size = 4)+
theme(legend.position = "top")
#Visualize
plot(homeless_time_plot)
```
##Homeless Demographics
Through this section we present several demographics of the homeless population.
Thanks to the data, we can understand the following:
*For most people, homelessness is a temporary rather than a chronic experience.
* A significant proportion are individuals alone rather than in families.
* Although men are a majority and are more visible, there is still a significant proportion of women.
* Most people experiencing homelessness are in an sheltered condition.
```{r, message=FALSE, fig.align='center', fig.height = 5, fig.width = 10}
#Load data of number of homeless in states
pit_by_state <- read_excel("Data/2007-2018-PIT-Counts-by-State.xlsx", sheet=2)
#Fix columns names
names(pit_by_state)<-make.names(names(pit_by_state),unique = TRUE)
#Get sheltered and unsheltered info
sheltered_unsheltered<- pit_by_state %>% tail(1) %>% select(Sheltered.Total.Homeless..2018, Unsheltered.Homeless..2018)
sh <- sheltered_unsheltered[1][[1]] /(sheltered_unsheltered[1][[1]] + sheltered_unsheltered[2][[1]])
unsh<- sheltered_unsheltered[2][[1]] /(sheltered_unsheltered[1][[1]] + sheltered_unsheltered[2][[1]])
#Get individuals alone/in families
alone_families<- pit_by_state %>% tail(1) %>% select(Homeless.Individuals..2018, Homeless.People.in.Families..2018)
alone <- alone_families[1][[1]] /(alone_families[1][[1]] + alone_families[2][[1]])
families<- alone_families[2][[1]] /(alone_families[1][[1]] + alone_families[2][[1]])
#Get chornic/temporary
chornic_temporary<- pit_by_state %>% tail(1) %>% select(Chronically.Homeless..2018, Overall.Homeless..2018
)
chornic_ <- chornic_temporary[1][[1]] /chornic_temporary[2][[1]]
temporary<- 1-chornic_
chornic<-chornic_
#Create dataframe for classifications
c <- matrix(0, ncol = 3, nrow = 0)
classifications <- data.frame(c)
colnames(classifications)<- c("Classification","Quantity","Type")
classifications <-
classifications %>%
add_row( Classification="Sheltered/Unsheltered", Quantity=sh, Type="b.Sheltered")%>%
add_row( Classification="Sheltered/Unsheltered", Quantity=unsh, Type="a.Unsheltered")%>%
add_row( Classification="Alone/In families", Quantity=alone, Type="b.Individuals alone")%>%
add_row( Classification="Alone/In families", Quantity=families, Type="a.Individuals in families")%>%
add_row( Classification="Temporary/Chornic", Quantity=temporary, Type="Temporary")%>%
add_row( Classification="Temporary/Chornic", Quantity=chornic, Type="Chornic")%>%
#Data for sex obtained from HUD report. Sex not reported in datasources. https://www.hudexchange.info/resources/documents/2018-AHAR-Part-1.pdf
add_row( Classification="Male/Female", Quantity=0.602, Type="b.Male")%>%
add_row( Classification="Male/Female", Quantity=0.391, Type="a.Female")#%>%
# add_row( Classification="Sex", Quantity=0.007, Type="Other")#%>%. What is a proper way of not showing that data but making it explicit?
positions <- c("Male/Female","Sheltered/Unsheltered","Alone/In families", "Temporary/Chornic")
#Idea from: https://solomonmg.github.io/blog/
ggplot(data = classifications, aes(x = Classification, y = Quantity, fill = Type)) +
geom_bar(stat = "identity",width = 0.5)+
coord_flip()+
scale_fill_manual(values = c(disc_cols[3],disc_cols[3], disc_cols[3],disc_cols[1], disc_cols[1],disc_cols[1], disc_cols[3],disc_cols[1]))+
geom_text(aes(label=percent(Quantity)),size = 4, position = position_stack(vjust = 0.5))+
scale_x_discrete(limits = positions)+
homeless_theme +
theme(legend.position="none")+
labs(title = "Majority of homeless are temporary, sheltered, alone and male",
subtitle = "Data ratifies homelessness is not a permanent experience for most people", caption = "Source: U.S. Department of Housing and Urban Development (HUD)",x = "", y="Percentage")
```
Race is a significant element of homeless demographics. Notably, we can observe that the different races present in the US population are not present in the homeless populations in the same proportions.
```{r, message=FALSE, fig.align='center', fig.height = 6, fig.width = 10}
races <- c('White','Black or African American','Native American',"Asian","Other races")
#Source: HUD Report, https://www.hudexchange.info/resource/5783/2018-ahar-part-1-pit-estimates-of-homelessness-in-the-us/
homeless_proportion <- c(`White`=48.9,`Black`=39.8,`Native American`=2.8,`Asian`=1.2,`Other races`=7.3)
#Source: https://www.census.gov/quickfacts/fact/table/US/IPE120217
country_proportion <- c(`White`=76.6,`Black`=13.4,`Native American`=1.3,`Asian`=5.8,`Other races`=2.9)
races_proportions <- data.frame(races,country_proportion,homeless_proportion)
names(races_proportions)[2]<- "Country composition"
names(races_proportions)[3]<- "Homeless composition"
#Square pie chart to show homeless race proportion
#Reference: https://harrycaufield.net/severalog/2016/7/29/8jt1lrt7hd2vqh4heu7mcuqrdcg0od
waffle_country <-
waffle(country_proportion*10, rows=20, size=0.1, colors=disc_cols)+
homeless_theme+
annotate("label", x = 6, y = 1.3, label = "76.6%",size=3.5)+
annotate("label", x = 45, y = 1.3, label = "13.4%",size=3.5)+
theme(legend.position="none")+
labs(title="Black/African american race is overrepresented in homeless population\nconsidering its proportion in the country", subtitle="While only ~13% of Americans are Black/African american, they represent ~40% of homeless population.\nOpposite happens with white americans and asians.")+
theme(legend.position="none")
waffle_homeless <-
waffle(homeless_proportion*10, rows=20, size=0.1, colors=disc_cols, xlab="1 square is 0.1% of homeless population")+
labs(caption="Source: U.S. Department of Housing and Urban Development (HUD)")+
annotate("label", x = 5, y = 1.3, label = "48.9%",size=3.5)+
annotate("label", x = 31, y = 1.3, label = "39.8%",size=3.5)+
homeless_theme
parall_coord <-
ggparcoord(data = races_proportions,
columns = c(2,3),
groupColumn = 1,
scale="globalminmax",
mapping = ggplot2::aes(size = 3),
showPoints = TRUE,
alphaLines = 0.9,
splineFactor = TRUE) +
scale_size_identity()+
homeless_theme+
scale_y_continuous(breaks=c(0,10,20,30,40,50,60,70,80))+
scale_color_manual(values = c("White"=disc_cols[1], "Black or African American"=disc_cols[2],"Native American"=disc_cols[3],"Asian"=disc_cols[4],"Other races"=disc_cols[5]),breaks=c("White", "Black or African American","Native American","Asian","Other races"))+
labs(x='',y="Percentage (%)")+
theme(legend.position="none")
gA <- ggplotGrob(waffle_country)
gB <- ggplotGrob(parall_coord)
gC <- ggplotGrob(waffle_homeless)
grid::grid.newpage()
grid::grid.draw(gtable_cbind(gA, gB, gC))
```
##Homelessness in different states during 2018
We will now compare the amount of homeless between states. NY and HI present severe rates of homeless per capita.
```{r, message=FALSE, fig.align='center', fig.height = 5, fig.width = 10}
#Do not consider last row of totals
pit_by_state<- pit_by_state %>% head(-1)
#Load data of population in states
population <- read_excel("Data/nst-est2018-01.xlsx", sheet=1, range = "A4:L60")
colnames(population)[colnames(population)=="X__1"] <- "State"
population$State <- sub(".", "", population$State)
population<-tail(population, -5) #Do not consider first elements
population$State <- state.abb[match(population$State, state.name)] #Change to state codes
#population[9,1] = "DC"
#Data frame with homeless population and state population, plus column with homeless every 100,000 citizens
homeless_and_population <- merge(pit_by_state, population, by = "State") %>% mutate(homeless_per_100000 = Overall.Homeless..2018/`2018`*100000)
#Plot states vs n_homeless_per_capita
#homeless_per_state_2018_plot<-
ggplot(data=homeless_and_population, aes(x=reorder(State, -homeless_per_100000), y=homeless_per_100000, fill=homeless_per_100000))+
geom_bar(stat = "identity")+
scale_y_continuous(
name="Number of homeless every 100,000",
limits=c(0,500),
breaks = c(0,50,100,200,300,400,500),
expand=c(0,0)
)+
scale_fill_gradientn(
colors = cont_cols,
aesthetics = "fill", name = "Homeless every 100,000 people")+
homeless_theme+
theme(
axis.text.x = element_text(size=9, angle = 90, vjust=-0.001),
panel.grid.major.x = element_blank())+ #Rotate x axis text
labs(title = "NY, HI, OR, and CA present highest levels\nof Homeless/capita in U.S. States on 2018",
subtitle = "Most states with around 50-150 homeles per 100,000 persons",
caption = "Source: U.S. Department of Housing and Urban Development (HUD)",
x = "States")
#Visualize
#plot(homeless_per_state_2018_plot)
```
It would now be interesting to have a geographical perspective of the differences between the states
```{r, fig.align='center', fig.height = 5, fig.width = 10, results='hide', fig.keep='all', warning = F, message = F}
#Add state column to homeless df with names of state in lower case so as to match with geom_map
homeless_and_population<-
homeless_and_population%>%
mutate(state = "")
homeless_and_population$state <- state.name[match(homeless_and_population$State, state.abb)] #Change to state names
homeless_and_population<-
homeless_and_population%>%
mutate(state = tolower(state))
#funciton to lowert case just frist letter
simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")
}
#Get states codes to show them in the map
state_codes<-ddply(fifty_states,~id,summarise,lat_mean=mean(lat),long_mean=mean(long))%>%mutate(state=id)
state_codes$state<-sapply(state_codes$state, simpleCap)
state_codes$state <- state.abb[match(state_codes$state, state.name)] #Change to state codes
#Only keep certain states of interest
state_codes_selection <- state_codes %>%
filter(state=="NY" | state=="CA"| state=="WA"| state=="OR"| state=="AK"| state=="HI"| state=="NY")
ggplot(homeless_and_population, aes(map_id = state)) +
geom_map(aes(fill = homeless_per_100000), map = fifty_states, color = "black") +
expand_limits(x = fifty_states$long, y = fifty_states$lat) +
coord_map()+
labs(title = "High proportion of homeless per capita presented\nin west coast states, New York, Alaska and Hawaii", subtitle = "Rest of the country presents small deviations", caption = "Source: U.S. Department of Housing and Urban Development (HUD)")+
scale_fill_gradientn(colors = cont_cols, aesthetics = "fill", name = "Homeless every 100,000 people")+
homeless_map_theme+
geom_label(data = state_codes_selection, aes(x = long_mean, y = lat_mean, label = state))+
coord_map("albers",lat0=39, lat1=45)
```
##Homelessness and GDP
During the following study we will try to understand if rich states experience more or less homelessness. Generally speaking, we can see that there is no trend.
```{r, message=FALSE, fig.align='center', fig.height = 5, fig.width = 10}
#Load data of GDP per states
gdp_state <- read_excel("Data/qgdpstate1118.xlsx", sheet=4, range = "A5:H64")
colnames(gdp_state)[colnames(gdp_state)=="X__1"] <- "State"
colnames(gdp_state)[colnames(gdp_state)=="Q2__1"] <- "GDP"
#Remove weird dots
gdp_state$State <- sapply(gdp_state$State, function(x)
iconv(x, from = 'UTF-8', to = 'ASCII//TRANSLIT'))
gdp_state$State <- sapply(gdp_state$State, function(x)gsub("\\.","",x))
gdp_state$State <- sapply(gdp_state$State, function(x)gsub(" $","",x, perl = T))
#Clean unimportant rows
gdp_state <- gdp_state %>% subset(State!="United States")%>%
subset(State!="United States")%>%
subset(State!="New England")%>%
subset(State!="Mideast")%>%
subset(State!="Great Lakes")%>%
subset(State!="Plains")%>%
subset(State!="Southeast")%>%
subset(State!="Southwest")%>%
subset(State!="Rocky Mountain")%>%
subset(State!="Far West")
gdp_state$State <- state.abb[match(gdp_state$State, state.name)] #Change to state codes
homeless_population_and_gdp <- merge(homeless_and_population, gdp_state, by = "State")
homeless_population_and_gdp <-
homeless_population_and_gdp %>%
mutate(GDP_per_capita = GDP*1000/`2018`)
#Plotting relationship between gdp and homeless_per_capita
homeless_and_gdp_plot<-
ggplot(homeless_population_and_gdp,
aes(x=GDP_per_capita, y=homeless_per_100000))+
geom_point(color=cont_cols[2])+
geom_smooth(color=cont_cols[1])+
geom_text_repel(aes(label=State), vjust = -0.5)+
scale_y_continuous(name="Homeless every 100,000 people")+
scale_x_continuous(name="GDP per capita (thousands USD)")+
labs(title = "No relationship between homeless and GDP per capita",
subtitle = "States with significant difference in GDP/capita may experience same level of homelessness", caption = "Source: U.S. HUD, U.S. Bureau of Economic Analysis")+
homeless_theme
plot(homeless_and_gdp_plot)
```
##Homelessness and Resources
The Department of Housing and Urban development of the US assigns funding to the different states to support programs aiming to build home for all their citizens. Among these programs there is the The Continuum of Care (CoC) Program, designed to promote community wide commitment to the goal of ending homelessness.
In the following graph we will study amount of homeless in states and their allocation of resources for CoC program. As we would have expected, states with big amount of homeless receive more allocations.
```{r, warning = FALSE, message=FALSE, fig.align='center', fig.height = 5, fig.width = 10}
#Load data of grants to CoC programs
grants <- read_excel("Data/Grantee_Awards_01272019_10472470.xlsx", sheet=1, range = "A4:G7248")
grants_by_state <- grants %>%
select(State, `Award Amount`)%>%
group_by(State) %>%
summarise_if(is.numeric, sum)
homeless_and_grants <- merge(grants_by_state, pit_by_state)
CA_NY_labels <- c("CA","NY")
states_over_5000 <- pit_by_state %>%
filter(Overall.Homeless..2018> 5000) %>%
select(State)%>%
filter(State!="NY")%>%
filter(State!="CA")
homeless_and_grants_plot_CA_NY<-
ggplot(homeless_and_grants,
aes(x=Overall.Homeless..2018/1000, y=`Award Amount`/1000000))+
geom_point(color=cont_cols[2])+
geom_smooth(color=cont_cols[1])+
geom_text_repel(data = homeless_and_grants[homeless_and_grants$State %in% CA_NY_labels,], aes(label=State), vjust = -0.5)+
scale_x_continuous(name="",labels=comma)+
scale_y_continuous(name="",labels=comma)+
theme(axis.title.x=element_blank(), panel.border = element_rect(colour = "black", fill=NA, size=1))+
homeless_theme
homeless_and_grants_plot_without_outliers <-
ggplot(data = homeless_and_grants[!homeless_and_grants$State %in% CA_NY_labels,],
aes(x=Overall.Homeless..2018/1000, y=`Award Amount`/1000000))+
geom_point(color=cont_cols[2])+
geom_smooth(color=cont_cols[1])+
geom_text_repel(data = homeless_and_grants[homeless_and_grants$State %in% states_over_5000$State,],aes(label=State, vjust = -0.5))+
scale_x_continuous(name="Total homeless (thousands)",labels=comma)+
scale_y_continuous(name="Funding for Homeless Programs\n(Millions USD)",labels=comma,limit = c(0,140))+
labs(title = "Good allocation of homeless resources in states\naccording to homeless population",subtitle = "Especially consistent with CA and NY states with highest funding and highest homeless populations", caption = "Source: U.S. HUD, U.S. Bureau of Economic Analysis")+
homeless_theme+
annotation_custom(grob= ggplotGrob(homeless_and_grants_plot_CA_NY),
xmin = 20,
xmax = 30,
ymin = 0,
ymax = 50)
plot(homeless_and_grants_plot_without_outliers)
```
##Studying New York City Homeless Population
As we have shown, New York State presents the highest index of homeless people per capita in the USA. Here we will present some brief more information about the homeless situation in the states capital city.
We are interested in the distribution of unsheltered homeless through different areas en New York. In addition, we would like to know the location of the different drop-in Centers, where homeless people are provided with hot meals, showers, medical help and a place to sleep, as well as locations of Homebase (Homeless Prevention Network) offices.
```{r, fig.align='center', fig.height = 7, fig.width = 10, results='hide', fig.keep='all', warning = F, message = F}
#DataSources
#https://data.cityofnewyork.us/Social-Services/Directory-Of-Homeless-Population-By-Year/5t4n-d72c/data
#https://data.cityofnewyork.us/Social-Services/Directory-Of-Homebase-Locations/ntcm-2w4k/data
#https://data.cityofnewyork.us/Social-Services/Directory-Of-Homeless-Drop-In-Centers/bmxf-3rd4/data
#https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-nynta.page
NY_shp <- st_read("Data/NewYork/nynta_18d/nynta.shp")
homeless_ny <-read.csv("Data/NewYork/Directory_Of_Homeless_Population_By_Year.csv")[25:29,2:3]
drop_in_centers_ny <-read.csv("Data/NewYork/Directory_Of_Homeless_Drop-_In_Centers.csv")
homebase_locations_ny <-read.csv("Data/NewYork/Directory_Of_Homebase_Locations.csv")
homebase_locations_ny <- homebase_locations_ny %>% mutate(Type="Homebase")
drop_in_centers_ny <- drop_in_centers_ny %>% mutate(Type="Drop in center")
homeless_ny <- homeless_ny %>%
separate(1,c(NA,"BoroName"), sep = "-")
homeless_ny$BoroName <- sapply(homeless_ny$BoroName, function(x)gsub("n I","n.I",x))
homeless_ny$BoroName <- sapply(homeless_ny$BoroName, function(x)gsub(" ","",x))
homeless_ny$BoroName <- sapply(homeless_ny$BoroName, function(x)gsub("n.I","n I",x))
NY_shp_with_homeless<-
merge(NY_shp, homeless_ny[,c("BoroName","Homeless.Estimates")],by="BoroName")
NY_shp_with_homeless <- mutate(NY_shp_with_homeless, Homeless.Estimates = as.numeric(Homeless.Estimates))
world <- ne_countries(scale = "medium", returnclass = "sf")
ggplot(data=world) +
geom_sf()+
geom_sf(data = NY_shp_with_homeless, aes(fill=Homeless.Estimates))+#include factor if want discrete legend
annotate(geom = "label", x = -73.9, y = 40.9, label = "Bronx",
fontface = "italic", color = "grey22", size = 3)+
annotate(geom = "label", x = -74, y = 40.65, label = "Brooklyn",
fontface = "italic", color = "grey22", size = 3)+
annotate(geom = "label", x = -73.98, y = 40.8, label = "Manhatann",
fontface = "italic", color = "grey22", size = 3)+
annotate(geom = "label", x = -73.8, y = 40.75, label = "Queens",
fontface = "italic", color = "grey22", size = 3)+
annotate(geom = "label", x = -74.15, y = 40.6, label = "Staten Island",
fontface = "italic", color = "grey22", size = 3)+
geom_point(data = homebase_locations_ny, aes(x = Longitude, y = Latitude, shape = Type), size = 3, colour = "blue")+
geom_point(data = drop_in_centers_ny, aes(x = Longitude, y = Latitude, shape=Type), size = 3, colour = "blue")+
coord_sf(xlim = c(-74.3, -73.6), ylim = c(40.5, 40.95), expand = FALSE)+
labs(title = "Manhattan presents low number of homeless centers\nproportional to its homeless population", subtitle = "Drop in centers for sleeping and Homeless prevention network offices (homebase)\nare not disrtibuted through the city according to unsheltered populations distribution", caption = "Source: City of New York Open Data Portal")+
homeless_map_theme+
scale_fill_gradientn(
colors = cont_cols,
aesthetics = "fill",
name = "Unsheltered homeless")
# guides(fill=guide_legend(title="Unsheltered homeless"))
# scale_fill_manual(values=cols)
#queens staten #1a9641
#brooklyn #c8e762
#bronx #5eb151
#manhatamm #d7191c
```