-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathprocessors.py
185 lines (147 loc) · 7.29 KB
/
processors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from typing import List
import numpy as np
from tensorflow.python.keras.utils.data_utils import Sequence
from config import Parameters
from point_pillars import createPillars, createPillarsTarget
from readers import DataReader, Label3D
def select(x, m):
dims = np.indices(x.shape[1:])
ind = (m,) + tuple(dims)
return x[ind]
class DataProcessor(Parameters):
def __init__(self):
super(DataProcessor, self).__init__()
anchor_dims = np.array(self.anchor_dims, dtype=np.float32)
self.anchor_dims = anchor_dims[:, 0:3]
self.anchor_z = anchor_dims[:, 3]
self.anchor_yaw = anchor_dims[:, 4]
@staticmethod
def transform_labels_into_lidar_coordinates(labels: List[Label3D], R: np.ndarray, t: np.ndarray):
transformed = []
for label in labels:
label.centroid = label.centroid @ np.linalg.inv(R).T - t
label.dimension = label.dimension[[2, 1, 0]]
label.yaw -= np.pi / 2
while label.yaw < -np.pi:
label.yaw += (np.pi * 2)
while label.yaw > np.pi:
label.yaw -= (np.pi * 2)
transformed.append(label)
return labels
def make_point_pillars(self, points: np.ndarray):
assert points.ndim == 2
assert points.shape[1] == 4
assert points.dtype == np.float32
pillars, indices = createPillars(points,
self.max_points_per_pillar,
self.max_pillars,
self.x_step,
self.y_step,
self.x_min,
self.x_max,
self.y_min,
self.y_max,
self.z_min,
self.z_max,
False)
return pillars, indices
def make_ground_truth(self, labels: List[Label3D]):
# filter by class
labels = list(filter(lambda x: x.classification in self.classes, labels))
if len(labels) == 0:
return
target_positions = np.array([label.centroid for label in labels], dtype=np.float32)
target_dimension = np.array([label.dimension for label in labels], dtype=np.float32)
target_yaw = np.array([label.yaw for label in labels], dtype=np.float32)
target_class = np.array([self.classes[label.classification] for label in labels], dtype=np.int32)
assert np.all(target_yaw >= -np.pi) & np.all(target_yaw <= np.pi)
assert len(target_positions) == len(target_dimension) == len(target_yaw) == len(target_class)
target = createPillarsTarget(target_positions,
target_dimension,
target_yaw,
target_class,
self.anchor_dims,
self.anchor_z,
self.anchor_yaw,
self.positive_iou_threshold,
self.negative_iou_threshold,
self.nb_classes,
self.downscaling_factor,
self.x_step,
self.y_step,
self.x_min,
self.x_max,
self.y_min,
self.y_max,
self.z_min,
self.z_max,
False)
best_anchors = target[..., 0:1].argmax(0)
selection = select(target, best_anchors)
# one hot encoding of class
clf = selection[..., 9]
clf[clf == -1] = 0
ohe = np.eye(self.nb_classes)[np.array(clf, dtype=np.int32).reshape(-1)]
ohe = ohe.reshape(list(clf.shape) + [self.nb_classes])
return selection[..., 0], selection[..., 1:4], selection[..., 4:7], selection[..., 7], selection[..., 8], ohe
class SimpleDataGenerator(DataProcessor, Sequence):
""" Multiprocessing-safe data generator for training, validation or testing, without fancy augmentation """
def __init__(self, data_reader: DataReader, batch_size: int, lidar_files: List[str], label_files: List[str] = None,
calibration_files: List[str] = None):
super(SimpleDataGenerator, self).__init__()
self.data_reader = data_reader
self.batch_size = batch_size
self.lidar_files = lidar_files
self.label_files = label_files
self.calibration_files = calibration_files
assert (calibration_files is None and label_files is None) or \
(calibration_files is not None and label_files is not None)
if self.calibration_files is not None:
assert len(self.calibration_files) == len(self.lidar_files)
assert len(self.label_files) == len(self.lidar_files)
def __len__(self):
return len(self.lidar_files) // self.batch_size
def __getitem__(self, batch_id: int):
file_ids = np.arange(batch_id * self.batch_size, self.batch_size * (batch_id + 1))
pillars = []
voxels = []
occupancy = []
position = []
size = []
angle = []
heading = []
classification = []
for i in file_ids:
lidar = self.data_reader.read_lidar(self.lidar_files[i])
pillars_, voxels_ = self.make_point_pillars(lidar)
pillars.append(pillars_)
voxels.append(voxels_)
if self.label_files is not None:
label = self.data_reader.read_label(self.label_files[i])
R, t = self.data_reader.read_calibration(self.calibration_files[i])
label_transformed = self.transform_labels_into_lidar_coordinates(label, R, t)
occupancy_, position_, size_, angle_, heading_, classification_ = self.make_ground_truth(label_transformed)
occupancy.append(occupancy_)
position.append(position_)
size.append(size_)
angle.append(angle_)
heading.append(heading_)
classification.append(classification_)
pillars = np.concatenate(pillars, axis=0)
voxels = np.concatenate(voxels, axis=0)
if self.label_files is not None:
occupancy = np.array(occupancy)
position = np.array(position)
size = np.array(size)
angle = np.array(angle)
heading = np.array(heading)
classification = np.array(classification)
return [pillars, voxels], [occupancy, position, size, angle, heading, classification]
else:
return [pillars, voxels]
def on_epoch_end(self):
shuffled_indices = np.random.permutation(np.arange(0, len(self.lidar_files)))
self.lidar_files = self.lidar_files[shuffled_indices]
if self.label_files is not None:
self.calibration_files = self.calibration_files[shuffled_indices]
self.label_files = self.label_files[shuffled_indices]