-
Notifications
You must be signed in to change notification settings - Fork 15
/
point_pillars_test.py
70 lines (56 loc) · 2.58 KB
/
point_pillars_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import unittest
import numpy as np
import tensorflow as tf
from point_pillars import createPillars, createPillarsTarget, select
class PointPillarsTest(unittest.TestCase):
def setUp(self):
np.random.seed(42)
xy = np.random.randint(-100, 100+1, size=(100000, 2))
z = np.random.randint(-3, 1+1, size=(100000, 1))
i = np.random.rand(100000)
self.arr = np.c_[xy, z, i]
assert self.arr.shape == (100000, 4)
def test_pillar_creation(self):
pillars, indices = createPillars(self.arr, 100, 12000, 0.16, 0.16, 0, 80.64, -40.32, 40.32, -3, 1, True)
assert pillars.shape == (1, 12000, 100, 7)
assert pillars.dtype == np.float32
assert indices.shape == (1, 12000, 3)
assert indices.dtype == np.int32
session = tf.Session()
pillars = tf.constant(pillars, dtype=tf.float32)
indices = tf.constant(indices, dtype=tf.int32)
feature_map = tf.scatter_nd(indices, tf.reduce_mean(pillars, axis=2), (1, 504, 504, 7))[0]
arr, = session.run([feature_map])
assert (arr.shape == (504, 504, 7))
@staticmethod
def test_pillar_target_creation():
dims = np.array([[3.7, 1.6, 1.4], [3.7, 1.6, 1.4], [0.8, 0.6, 1.7]], dtype=np.float32)
posn = np.array([[50, 10, 0], [20, 0, 0], [30, 5, 0]], dtype=np.float32)
yaws = np.array([0, 0, 90], dtype=np.float32)
target = createPillarsTarget(posn,
dims,
yaws,
np.array([1, 1, 2], dtype=np.int32),
dims[[0, 2]],
np.array([0, 0], dtype=np.float32),
np.array([0, 90], dtype=np.float32),
0.5,
0.4,
10,
2,
0.1,
0.1,
0,
80,
-40,
40,
-3,
1,
True)
assert target.shape == (3, 400, 400, 2, 10)
assert (target[..., 0] == 1).sum() == 83
selected = target[..., 0:1].argmax(axis=0)
target = select(target, selected)
assert (target.shape == (400, 400, 2, 10))
if __name__ == "__main__":
unittest.main()