This repository has been archived by the owner on Jul 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
127 lines (98 loc) · 3.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from pathlib import Path
import torch
import numpy as np
import pandas as pd
from scipy.stats import mannwhitneyu
RED = '\033[91m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
BLUE = '\033[94m'
MAGENTA = '\033[95m'
CYAN = '\033[96m'
WHITE = '\033[97m'
BOLD = '\033[1m'
ENDC = '\033[0m'
def print_color(string, color, bold=False):
"""
Formats the string with colors for terminal prints
"""
if bold is True:
print(BOLD + color + string + ENDC)
else:
print(color + string + ENDC)
def sglob(path, pattern='*'):
return list(sorted(path.glob(pattern)))
def get_stem(path):
"""
'/home/user/image.nii.gz' -> 'image'
"""
return Path(path).name.split('.')[0]
def get_device():
return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def to_tuple(value, length: int = 1):
try:
iter(value)
value = tuple(value)
except TypeError:
value = length * (value,)
return value
def get_entropy(tensor, epsilon=1e-6):
tensor = torch.stack((1 - tensor, tensor), dim=1)
mean = tensor.mean(dim=0) + epsilon # avoid NaNs in log
h = - (mean * mean.log()).sum(dim=0)
assert np.count_nonzero(np.isnan(h)) == 0
return h
def enable_dropout(model):
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
m.train()
def get_median_iqr(x):
p25, p50, p75 = np.percentile(x, (25, 50, 75))
return np.array((p50, p75 - p25))
def print_significance(
name_1,
name_2,
dice_1,
dice_2,
num_experiments=None,
alpha=0.05,
):
U, p = mannwhitneyu(dice_1, dice_2, alternative='less')
if num_experiments is None:
bonferroni_factor = 1
else:
bonferroni_factor = (num_experiments * (num_experiments - 1)) / 2
m, i = get_median_iqr(dice_1)
print(f'Median (IQR) of {name_1}: {m:.1f} ({i:.1f})')
m, i = get_median_iqr(dice_2)
print(f'Median (IQR) of {name_2}: {m:.1f} ({i:.1f})')
print(f'{name_2} better than {name_1}: ', end='')
if p <= 0.0001 / bonferroni_factor:
print_color('****', BLUE)
elif p <= 0.001 / bonferroni_factor:
print_color('***', CYAN)
elif p <= 0.01 / bonferroni_factor:
print_color('**', GREEN)
elif p <= 0.05 / bonferroni_factor:
print_color('*', YELLOW)
else:
print_color('ns', RED)
# if p < alpha:
# print('Significant difference')
# else:
# print('No significant difference')
print('U:', U)
print('p:', p)
print()
def read_df(path):
return pd.read_csv(path, index_col=0, dtype={'Subject': str})
def get_df(experiment):
path = Path(__file__).parent / 'runs' / str(experiment) / 'evaluation.csv'
return read_df(path)
def get_dices(experiment):
return get_df(experiment).Dice.values
def merge_dfs_in_dir(directory):
directory = Path(directory)
dfs = [read_df(path) for path in directory.glob('*.csv')]
# https://stackoverflow.com/a/46100235/3956024
return pd.concat(dfs, ignore_index=True).sort_values(by='Subject')