-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsettings.py
executable file
·78 lines (70 loc) · 2.74 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from sklearn.preprocessing import MinMaxScaler, RobustScaler
"""global params"""
n_repetitions = 5
# preprocessing
epsilon_T = 15 # controls the window size around ambient temperature
merging='median' # 'median'/'best' (drop duplicates and save best value)
med_sigma_multiplier = 0.5 # in 'median' merging, values with duplicates with std > 0.5*median are discarted
mult_outliers = 3 # values above mean + 3*sigma are discarted
# split
split = 'random' # 'top' # 'novelty'
shuffle_after_split = True
extraord_size = 0.2 # best 20% will be extraord.
train_size, val_size, test_size = [0.7, 0.1, 0.2] # % train /val /test
k_val, k_test = [0., 2./3.] # % top for val and test.
# featurization
elem_prop = 'magpie'
# models
models_list = [
'baseline',
'concat',
'elem_concat',
'disco'
]
#elemconcat
k_elemconcat = 5
n_elemconcat = 10
#crabnet
crabnet_kwargs = {'epochs':300, 'batch_size':32, 'verbose':False, 'discard_n':10}
#roost
roost_kwargs = {'epochs': 300, 'batch_size':32}
#discover
discover_kwargs = {'exit_mode': 'percentage', #'thr' / 'percentage'
'batch_size': 5,
#------
# in threshold mode
'thresh' : 0.9999,
# in percentage mode
'percentage' : 0.1,
#------
'scaled' : True,
'scaler' : RobustScaler(),
'density_weight':1.0,
'target_weight':1.0,
'scores': ['density']
}
#random
rnd_kwargs = {'exit_mode': 'percentage', # percentage or iters
'batch_size': 5,
'n_iters': 10, # used if 'exit_mode' = 'iters'
'percentage': 1., # used if 'exit_mode' = 'percentage'
}
ascending_setting = {'thermalcond': False,
'superconT' : False,
'bulkmodulus' : False,
'bandgap' : False,
'seebeck' : False,
'rho' : True,
'sigma' : False,
'shearmodulus': False
}
#can change `mp` with `mpds` if you have access to mpds data
pairs={'thermalcond' : ['citrine', 'mpds'],
'superconT' : ['japdata', 'mpds'],
'bulkmodulus' : ['aflow', 'mp'], #mpds or mp
'bandgap' : ['zhuo', 'mpds'], #mpds or mp
'seebeck' : ['te', 'mpds'],
'rho' : ['te', 'mpds'],
'sigma' : ['te', 'mpds'],
'shearmodulus' : ['aflow', 'mp'] #mpds or mp
}