-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_Multidimensional_Scaling.R
60 lines (49 loc) · 1.24 KB
/
8_Multidimensional_Scaling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
##### ANALISIS MULTIDIMENSIONAL SCALING METRIK #####
#===== Input Data
data1<-read.csv(file.choose(),header=TRUE,sep=";")
head(data1)
Smartphone<-data1[,1]
head(Smartphone)
data<-data1[,2:11]
rownames(data)=Smartphone
head(data)
#===== Menghitung Jarak Euclidean
d<-dist(data, method="euclidean")
d
#===== Analisis Multidimensional Scaling
fit<-cmdscale(d, eig=TRUE, k=2) # dalam 2 dimensi
fit
#===== Membuat Peta MDS
x<-fit$points[,1]
y<-fit$points[,2]
plot(x, y, xlab="x", ylab="y", main="Classical MDS", type="n")
abline(v=0)
abline(h=0)
text(x, y, labels = row.names(data), cex=.7)
##### ANALISIS MULTIDIMENSIONAL SCALING NON METRIK #####
#===== Menghitung Nilai Stress
n=nrow(data) # banyak unit observasi
k=2 # dimensi
Dm=as.matrix(d)
dij2=Dm^2
I=diag(n)
J=matrix(1,nrow=n,ncol=n)
V=I-(1/n)*J
B=(-1/2)*V%*%dij2%*%V # matriks B
ne=eigen(B)$value[1:k] # nilai eigen
ne
ve=eigen(B)$vectors[,1:k] # vektor eigen
ve
F=ve%*%(sqrt(diag(ne))) # matriks koordinat objek
F
Dhat=dist(F) # matriks jarak
Dhat
# Stress dalam persen
Stress=(sqrt(sum((dist(data)-Dhat)^2))/(sum(dist(data)^2)))*100
Stress
#===== Menghitung Nilai R-square
R2=1-(sum((dist(data)-Dhat)^2))/(sum(dist(data)^2))
R2
# R^2 dalam persen
Rsquare=R2*100
Rsquare