Skip to content

Latest commit

 

History

History
585 lines (505 loc) · 19.2 KB

README.md

File metadata and controls

585 lines (505 loc) · 19.2 KB

DadmaTools: A Python NLP Library for Persian

Documentation Status
Named Entity Recognition | Part of Speech Tagging | Dependency Parsing | Informal To Formal
Constituency Parsing | Chunking | Kasreh Ezafe Detection
Spellchecker | Normalizer | Tokenizer | Lemmatizer

DadmaTools

DadmaTools is a repository for Natural Language Processing resources for the Persian Language. The aim is to make it easier and more applicable to practitioners in the industry to use Persian NLP, and hence this project is licensed to allow commercial use. The project features code examples on how to use the models in popular NLP frameworks such as spaCy and Transformers, as well as Deep Learning frameworks such as PyTorch. Furthermore, DadmaTools support common Persian embedding and Persian datasets. for more details about how to use this tool read the instruction below.

Contents:

Installation

To get started using DadmaTools in your python project, simply install via the pip package. Note that installing the default pip package will not install all NLP libraries because we want you to have the freedom to limit the dependency on what you use. Instead, we provide you with an installation option if you want to install all the required dependencies.

Install with pip

To get started using DadmaTools, simply install the project with pip:

pip install dadmatools 

Note that the default installation of DadmaTools does install other NLP libraries such as SpaCy and supar.

You can check the requirements.txt file to see what version the packages has been tested with.

Install from github

Alternatively you can install the latest version from github using:

pip install git+https://github.com/Dadmatech/dadmatools.git

NLP Models

Natural Language Processing is an active area of research, and it consists of many different tasks. The DadmaTools repository provides an overview of Persian models for some of the most basic NLP tasks (and is continuously evolving).

Here is the list of NLP tasks we currently cover in the repository. These NLP tasks are defined as pipelines. Therefore, a pipeline list must be created and passed through the model. This will allow the user to choose the only task needed without loading others. Each task has its abbreviation as follows:

  • Named Entity Recognition: ner
  • Part of speech tagging: pos
  • Dependency parsing: dep
  • Constituency parsing: cons
  • Kasreh Ezafe Detection: kasreh
  • Chunking: chunk
  • Lemmatizing: lem
  • Tokenizing: tok
  • Spellchecker: spellchecker
  • Normalizing
  • informal2formal: itf

Note that the normalizer can be used outside of the pipeline as there are several configs (the default config is in the pipeline with the name of def-norm). Note that if no pipeline is passed to the model, the tokenizer will be loaded as default.

Normalizer

cleaning text and unify characters.

Note: None means no action!

from dadmatools.normalizer import Normalizer

normalizer = Normalizer(
    full_cleaning=False,
    unify_chars=True,
    refine_punc_spacing=True,
    remove_extra_space=True,
    remove_puncs=False,
    remove_html=False,
    remove_stop_word=False,
    replace_email_with="<EMAIL>",
    replace_number_with=None,
    replace_url_with="",
    replace_mobile_number_with=None,
    replace_emoji_with=None,
    replace_home_number_with=None
)

text = """
<p>
دادماتولز اولین نسخش سال ۱۴۰۰ منتشر شده. 
امیدواریم که این تولز بتونه کار با متن رو براتون شیرین‌تر و راحت‌تر کنه
لطفا با ایمیل dadmatools@dadmatech.ir با ما در ارتباط باشید
آدرس گیت‌هاب هم که خب معرف حضور مبارک هست:
 https://github.com/Dadmatech/DadmaTools
</p>
"""
normalized_text = normalizer.normalize(text)
# <p> دادماتولز اولین نسخش سال 1400 منتشر شده. امیدواریم که این تولز بتونه کار با متن رو براتون شیرین‌تر و راحت‌تر کنه لطفا با ایمیل <EMAIL> با ما در ارتباط باشید آدرس گیت‌هاب هم که خب معرف حضور مبارک هست: </p>

# full cleaning
normalizer = Normalizer(full_cleaning=True)
normalized_text = normalizer.normalize(text)
# دادماتولز نسخش سال منتشر تولز بتونه کار متن براتون شیرین‌تر راحت‌تر کنه ایمیل ارتباط آدرس گیت‌هاب معرف حضور مبارک

Pipeline

Containing Tokenizer, Lemmatizer, POS Tagger, Dependancy Parser, Constituency Parser, Kasreh, Spellcheker, Infromal To Formal, Name Entity Recognation.

import dadmatools.pipeline.language as language

# here lemmatizer and pos tagger will be loaded
# as tokenizer is the default tool, it will be loaded as well even without calling
pips = 'tok, lem, pos, dep, chunk, cons, spellchecker, kasreh, itf, ner'
nlp = language.Pipeline(pips)

# doc is an SpaCy object
doc = nlp(' ایران در قرب آسیا وجود داره و خلیج فارس توش قرار داره')

doc object has different extensions. First, there are sentences in doc which is the list of the list of Token. Each Token also has its own extensions. Note that we defined our own extension as well in DadmaTools. If any pipeline related to the specific extensions is not called, that extension will have no value.

To better see the results which you can use this code:

dictionary = language.to_json(pips, doc)
print(dictionary)
{'spellchecker': {'orginal': ' ایران در قرب آسیا وجود داره و خلیج فارس توش قرار داره',
  'corrected': 'ایران در غرب آسیا وجود داره و خلیج فارس توش قرار داره',
  'checked_words': [('قرب', 'غرب')]},
 'itf': ' ایران در قرب آسیا وجود دارد و خلیج\u200cفارس درش قرار دارد',
 'sentences': [{'id': 1,
   'tokens': [{'id': 1,
     'text': 'ایران',
     'upos': 'PRON',
     'xpos': 'PRO',
     'feats': 'Number=Sing',
     'head': 6,
     'deprel': 'nsubj',
     'lemma': 'ایران',
     'ner': 'S-loc',
     'kasreh': 'O'},
    {'id': 2,
     'text': 'در',
     'upos': 'ADP',
     'xpos': 'P',
     'head': 6,
     'deprel': 'case',
     'lemma': 'در',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 3,
     'text': 'قرب',
     'upos': 'SCONJ',
     'xpos': 'CON',
     'feats': 'Number=Plur|Person=2|Tense=Past',
     'head': 2,
     'deprel': 'fixed',
     'lemma': 'قرب',
     'ner': 'O',
     'kasreh': 'S-kasreh'},
    {'id': 4,
     'text': 'آسیا',
     'upos': 'SCONJ',
     'xpos': 'CON',
     'feats': 'Case=Loc',
     'head': 8,
     'deprel': 'nmod:poss',
     'lemma': 'آسیا',
     'ner': 'S-loc',
     'kasreh': 'O'},
    {'id': 5,
     'text': 'وجود',
     'upos': 'SCONJ',
     'xpos': 'CON',
     'feats': 'Number=Sing|Person=3|Tense=Pres',
     'head': 2,
     'deprel': 'fixed',
     'lemma': 'وجود',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 6,
     'text': 'داره',
     'upos': 'VERB',
     'xpos': 'V_PRS',
     'feats': 'Number=Sing|Person=3|Tense=Pres',
     'head': 0,
     'deprel': 'root',
     'lemma': 'داره',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 7,
     'text': 'و',
     'upos': 'CCONJ',
     'xpos': 'CON',
     'head': 6,
     'deprel': 'cc',
     'lemma': 'و',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 8,
     'text': 'خلیج',
     'upos': 'SCONJ',
     'xpos': 'CON',
     'feats': 'Number=Sing',
     'head': 6,
     'deprel': 'nsubj',
     'lemma': 'خلیج',
     'ner': 'B-loc',
     'kasreh': 'S-kasreh'},
    {'id': 9,
     'text': 'فارس',
     'upos': 'X',
     'xpos': 'FW',
     'feats': 'Mood=Sub|Number=Sing|Person=3|Tense=Pres',
     'head': 8,
     'deprel': 'nmod:poss',
     'lemma': 'فارس',
     'ner': 'E-loc',
     'kasreh': 'O'},
    {'id': 10,
     'text': 'توش',
     'upos': 'PRON',
     'xpos': 'PRO',
     'feats': 'Number=Sing|Person=2|PronType=Prs',
     'head': 6,
     'deprel': 'obj',
     'lemma': 'توش',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 11,
     'text': 'قرار',
     'upos': 'NOUN',
     'xpos': 'N_SING',
     'feats': 'Number=Sing|Person=3|Tense=Pres',
     'head': 6,
     'deprel': 'compound:lvc',
     'lemma': 'قرار',
     'ner': 'O',
     'kasreh': 'O'},
    {'id': 12,
     'text': 'داره',
     'upos': 'VERB',
     'xpos': 'V_PRS',
     'feats': 'Number=Sing|Person=3|Tense=Pres',
     'head': 6,
     'deprel': 'aux',
     'lemma': 'داره',
     'ner': 'O',
     'kasreh': 'O'}]}],
 'lang': 'persian'}

Loading Persian NLP Datasets

We provide an easy-to-use way to load some popular Persian NLP datasets

Here is the list of supported datasets.

Dataset Task
PersianNER Named Entity Recognition
ARMAN Named Entity Recognition
Peyma Named Entity Recognition
FarsTail Textual Entailment
FaSpell Spell Checking
PersianNews Text Classification
PerUDT Universal Dependency
PnSummary Text Summarization
SnappfoodSentiment Sentiment Classification
TEP Text Translation(eng-fa)
WikipediaCorpus Corpus
PersianTweets Corpus

all datasets are iterator and can be used like below:

from dadmatools.datasets import FarsTail
from dadmatools.datasets import SnappfoodSentiment
from dadmatools.datasets import Peyma
from dadmatools.datasets import PerUDT
from dadmatools.datasets import PersianTweets
from dadmatools.datasets import PnSummary


farstail = FarsTail()
#len of dataset
print(len(farstail.train))

#like a generator
print(next(farstail.train))

#dataset details
pn_summary = PnSummary()
print('PnSummary dataset information: ', pn_summary.info)

#loop over dataset
snpfood_sa = SnappfoodSentiment()
for i, item in enumerate(snpfood_sa.test):
    print(item['comment'], item['label'])

#get first tokens' lemma of all dev items
perudt = PerUDT()
for token_list in perudt.dev:
    print(token_list[0]['lemma'])

#get NER tag of first Peyma's data
peyma = Peyma()
print(next(peyma.data)[0]['tag'])

#corpus 
tweets = PersianTweets()
print('tweets count : ', len(tweets.data))
print('sample tweet: ', next(tweets.data))

get dataset info:

from dadmatools.datasets import get_all_datasets_info

get_all_datasets_info().keys()
#dict_keys(['Persian-NEWS', 'fa-wiki', 'faspell', 'PnSummary', 'TEP', 'PerUDT', 'FarsTail', 'Peyma', 'snappfoodSentiment', 'Persian-NER', 'Arman', 'PerSent'])

#specify task
get_all_datasets_info(tasks=['NER', 'Sentiment-Analysis'])

the output will be:

{"ARMAN": {"description": "ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes.\n\nOrganization\nLocation\nFacility\nEvent\nProduct\nPerson",
  "filenames": ["train_fold1.txt",
   "train_fold2.txt",
   "train_fold3.txt",
   "test_fold1.txt",
   "test_fold2.txt",
   "test_fold3.txt"],
  "name": "ARMAN",
  "size": {"test": 7680, "train": 15361},
  "splits": ["train", "test"],
  "task": "NER",
  "version": "1.0.0"},
 "PersianNer": {"description": "source: https://github.com/Text-Mining/Persian-NER",
  "filenames": ["Persian-NER-part1.txt",
   "Persian-NER-part2.txt",
   "Persian-NER-part3.txt",
   "Persian-NER-part4.txt",
   "Persian-NER-part5.txt"],
  "name": "PersianNer",
  "size": 976599,
  "splits": [],
  "task": "NER",
  "version": "1.0.0"},
 "Peyma": {"description": "source: http://nsurl.org/2019-2/tasks/task-7-named-entity-recognition-ner-for-farsi/",
  "filenames": ["peyma/600K", "peyma/300K"],
  "name": "Peyma",
  "size": 10016,
  "splits": [],
  "task": "NER",
  "version": "1.0.0"},
 "snappfoodSentiment": {"description": "source: https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood",
  "filenames": ["snappfood/train.csv",
   "snappfood/test.csv",
   "snappfood/dev.csv"],
  "name": "snappfoodSentiment",
  "size": {"dev": 6274, "test": 6972, "train": 56516},
  "splits": ["train", "test", "dev"],
  "task": "Sentiment-Analysis",
  "version": "1.0.0"}}

Loading Persian Word Embeddings

To start using embedding please install fasttext:

pip install fasttext

download, load and use some pre-trained Persian word embeddings.

dadmatools supports all glove, fasttext, and word2vec formats.

from dadmatools.embeddings import get_embedding, get_all_embeddings_info, get_embedding_info
from pprint import pprint

pprint(get_all_embeddings_info())

#get embedding information of specific embedding
embedding_info = get_embedding_info('glove-wiki')

#### load embedding ####
word_embedding = get_embedding('glove-wiki')

#get vector of the word
print(word_embedding['سلام'])

#vocab
vocab = word_embedding.get_vocab()

### some useful functions ###
print(word_embedding.top_nearest("زمستان", 10))
print(word_embedding.similarity('کتب', 'کتاب'))
print(word_embedding.embedding_text('امروز هوای خوبی بود'))

The following word embeddings are currently supported:

Name Embedding Algorithm Corpus
glove-wiki glove Wikipedia
fasttext-commoncrawl-bin fasttext CommonCrawl
fasttext-commoncrawl-vec fasttext CommonCrawl
word2vec-conll word2vec Persian CoNLL17 corpus

Evaluation

We have compared our pos tagging, dependancy parsing, and lemmatization models to stanza and hazm.

PerDT (F1 score)
Toolkit POS Tagger (UPOS) Dependancy Parser (UAS/LAS) Lemmatizer
DadmaTools 97.52% 95.36% / 92.54% 99.14%
stanza 97.35% 93.34% / 91.05% 98.97%
hazm - - 89.01%
Seraji (F1 score)
Toolkit POS Tagger (UPOS) Dependancy Parser (UAS/LAS) Lemmatizer
DadmaTools 97.83% 92.5% / 89.23% -
stanza 97.43% 87.20% / 83.89% -
hazm - - 86.93%
Tehran university tree bank (F1 score)
Toolkit Constituency Parser
DadmaTools (without preprocess)) 82.88%
Stanford (with some preprocess on POS tags) 80.28

How to use

You can see the codes and the output in colab.

Open In Colab

Cite

@inproceedings{etezadi-etal-2022-dadmatools,
    title = "{D}adma{T}ools: Natural Language Processing Toolkit for {P}ersian Language",
    author = "Etezadi, Romina  and
      Karrabi, Mohammad  and
      Zare, Najmeh  and
      Sajadi, Mohamad Bagher  and
      Pilehvar, Mohammad Taher",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations",
    month = jul,
    year = "2022",
    address = "Hybrid: Seattle, Washington + Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-demo.13",
    pages = "124--130",
    abstract = "We introduce DadmaTools, an open-source Python Natural Language Processing toolkit for the Persian language. The toolkit is a neural pipeline based on spaCy for several text processing tasks, including normalization, tokenization, lemmatization, part-of-speech, dependency parsing, constituency parsing, chunking, and ezafe detecting. DadmaTools relies on fine-tuning of ParsBERT using the PerDT dataset for most of the tasks. Dataset module and embedding module are included in DadmaTools that support different Persian datasets, embeddings, and commonly used functions for them. Our evaluations show that DadmaTools can attain state-of-the-art performance on multiple NLP tasks. The source code is freely available at https://github.com/Dadmatech/DadmaTools.",
}