-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcross_check_eval.py
114 lines (92 loc) · 4.77 KB
/
cross_check_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import features
import serialize
import nnue_dataset
import subprocess
import re
import chess
from model import NNUE
def read_model(nnue_path, feature_set):
with open(nnue_path, 'rb') as f:
reader = serialize.NNUEReader(f, feature_set)
return reader.model
def eval_model_batch(model, batch):
us, them, white_indices, white_values, black_indices, black_values, outcome, score, psqt_indices, layer_stack_indices = batch.contents.get_tensors('cuda')
evals = [v.item() for v in model.forward(us, them, white_indices, white_values, black_indices, black_values, psqt_indices, layer_stack_indices) * 600.0]
for i in range(len(evals)):
if them[i] > 0.5:
evals[i] = -evals[i]
return evals
re_nnue_eval = re.compile(r'NNUE evaluation:\s*?(-?\d*?\.\d*)')
def compute_basic_eval_stats(evals):
min_engine_eval = min(evals)
max_engine_eval = max(evals)
avg_engine_eval = sum(evals) / len(evals)
avg_abs_engine_eval = sum(abs(v) for v in evals) / len(evals)
return min_engine_eval, max_engine_eval, avg_engine_eval, avg_abs_engine_eval
def compute_correlation(engine_evals, model_evals):
if len(engine_evals) != len(model_evals):
raise Exception("number of engine evals doesn't match the number of model evals")
min_engine_eval, max_engine_eval, avg_engine_eval, avg_abs_engine_eval = compute_basic_eval_stats(engine_evals)
min_model_eval, max_model_eval, avg_model_eval, avg_abs_model_eval = compute_basic_eval_stats(model_evals)
print('Min engine/model eval: {} / {}'.format(min_engine_eval, min_model_eval))
print('Max engine/model eval: {} / {}'.format(max_engine_eval, max_model_eval))
print('Avg engine/model eval: {} / {}'.format(avg_engine_eval, avg_model_eval))
print('Avg abs engine/model eval: {} / {}'.format(avg_abs_engine_eval, avg_abs_model_eval))
relative_model_error = sum(abs(model - engine) / (abs(engine)+0.001) for model, engine in zip(model_evals, engine_evals)) / len(engine_evals)
relative_engine_error = sum(abs(model - engine) / (abs(model)+0.001) for model, engine in zip(model_evals, engine_evals)) / len(engine_evals)
print('Relative engine error: {}'.format(relative_engine_error))
print('Relative model error: {}'.format(relative_model_error))
print('Avg abs difference: {}'.format(sum(abs(model - engine) for model, engine in zip(model_evals, engine_evals)) / len(engine_evals)))
def eval_engine_batch(engine_path, net_path, fens):
engine = subprocess.Popen([engine_path], stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True)
parts = ['uci', 'setoption name EvalFile value {}'.format(net_path)]
for fen in fens:
parts.append('position fen {}'.format(fen))
parts.append('eval')
parts.append('quit')
query = '\n'.join(parts)
out = engine.communicate(input=query)[0]
evals = re.findall(re_nnue_eval, out)
return [int(float(v)*208) for v in evals]
def filter_fens(fens):
# We don't want fens where a king is in check, as these cannot be evaluated by the engine.
filtered_fens = []
for fen in fens:
board = chess.Board(fen=fen)
if not board.is_check():
filtered_fens.append(fen)
return filtered_fens
def main():
parser = argparse.ArgumentParser(description="")
parser.add_argument("--net", type=str, help="path to a .nnue net")
parser.add_argument("--engine", type=str, help="path to stockfish")
parser.add_argument("--data", type=str, help="path to a .bin or .binpack dataset")
parser.add_argument("--checkpoint", type=str, help="Optional checkpoint (used instead of nnue for local eval)")
parser.add_argument("--count", type=int, default=100, help="number of datapoints to process")
features.add_argparse_args(parser)
args = parser.parse_args()
batch_size = 1000
feature_set = features.get_feature_set_from_name(args.features)
if args.checkpoint:
model = NNUE.load_from_checkpoint(args.checkpoint, feature_set=feature_set)
else:
model = read_model(args.net, feature_set)
model.eval()
model.cuda()
fen_batch_provider = make_fen_batch_provider(args.data, batch_size)
model_evals = []
engine_evals = []
done = 0
print('Processed {} positions.'.format(done))
while done < args.count:
fens = filter_fens(next(fen_batch_provider))
b = nnue_dataset.make_sparse_batch_from_fens(feature_set, fens, [0] * len(fens), [1] * len(fens), [0] * len(fens))
model_evals += eval_model_batch(model, b)
nnue_dataset.destroy_sparse_batch(b)
engine_evals += eval_engine_batch(args.engine, args.net, fens)
done += len(fens)
print('Processed {} positions.'.format(done))
compute_correlation(engine_evals, model_evals)
if __name__ == '__main__':
main()