This repository has been archived by the owner on Nov 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathhubert_feature_reader.py
76 lines (62 loc) · 2.3 KB
/
hubert_feature_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import fairseq
import torch.nn.functional as F
class HubertFeatureReader(torch.nn.Module):
def __init__(
self, checkpoint_path, layer=6, max_chunk=100 * 16_000, lazy_load=False
):
super().__init__()
# NB: fairseq doesn't support pathlib.Path
self.checkpoint_path = str(checkpoint_path)
self.should_normalize = False
self.lazy_load = lazy_load
self.model = None
self.layer = layer
self.max_chunk = max_chunk
# this is useful for determining the device
self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float))
if not self.lazy_load:
self.load_checkpoint_()
@torch.no_grad() # otherwise some non-leaf nodes appear which breaks serialization
def load_checkpoint_(self):
model, _, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[self.checkpoint_path]
)
self.model = model[0].eval()
self.model = self.model.to(self.device)
for parameter in self.model.parameters():
parameter.requires_grad_(False)
self.should_normalize = task.cfg.normalize
@property
def device(self):
return self._float_tensor.device
@property
def code_hop_size(self) -> int:
return 320
@property
def expected_sample_rate(self) -> int:
return 16_000
def forward(self, x):
if self.lazy_load and self.model is None:
self.load_checkpoint_()
return self.get_features(x)
@torch.inference_mode()
def get_features(self, x):
x = x.to(self.device)
if self.should_normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start : start + self.max_chunk]
feat_chunk, _ = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
output_layer=self.layer,
)
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0).cpu()