This repository has been archived by the owner on Nov 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 240
/
Copy pathsweep_launch.py
executable file
·108 lines (96 loc) · 3.75 KB
/
sweep_launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Launch sweep on a SLURM managed cluster."""
import os
import pycls.sweep.config as sweep_config
from pycls.sweep.config import sweep_cfg
_SBATCH_CMD = (
"sbatch"
" --job-name={name}"
" --partition={partition}"
" --gpus={num_gpus}"
" --constraint={gpu_type}"
" --mem={mem}GB"
" --cpus-per-task={cpus}"
" --array=0-{last_job}%{parallel_jobs}"
" --output={sweep_dir}/logs/sbatch/%A_%a.out"
" --error={sweep_dir}/logs/sbatch/%A_%a.out"
" --time={time_limit}"
' --comment="{comment}"'
" --signal=B:USR1@300"
" --nodes=1"
" --open-mode=append"
" --ntasks-per-node=1"
" {current_dir}/sweep_launch_job.py"
" --conda-env {conda_env}"
" --script-path {script_path}"
" --cfgs-dir {cfgs_dir}"
" --pycls-dir {pycls_dir}"
" --logs-dir {logs_dir}"
" --max-retry {max_retry}"
)
def sweep_launch():
"""Launch sweep on a SLURM managed cluster."""
launch_cfg = sweep_cfg.LAUNCH
# Get and check directory and script locations
current_dir = os.path.dirname(os.path.abspath(__file__))
sweep_dir = os.path.abspath(os.path.join(sweep_cfg.ROOT_DIR, sweep_cfg.NAME))
cfgs_dir = os.path.join(sweep_dir, "cfgs")
logs_dir = os.path.join(sweep_dir, "logs")
sbatch_dir = os.path.join(logs_dir, "sbatch")
script_path = os.path.abspath(launch_cfg.SCRIPT)
assert os.path.exists(sweep_dir), "Sweep dir {} invalid".format(sweep_dir)
assert os.path.exists(script_path), "Script path {} invalid".format(script_path)
n_cfgs = len([c for c in os.listdir(cfgs_dir) if c.endswith(".yaml")])
# Replace path to be relative to copy of pycls
pycls_copy_dir = os.path.join(sweep_dir, "pycls")
pycls_dir = os.path.abspath(os.path.join(current_dir, ".."))
script_path = script_path.replace(pycls_dir, pycls_copy_dir)
current_dir = current_dir.replace(pycls_dir, pycls_copy_dir)
# Prepare command to copy pycls to sweep_dir/pycls
cmd_to_copy_pycls = "cp -R {}/ {}".format(pycls_dir, pycls_copy_dir)
print("Cmd to copy pycls:", cmd_to_copy_pycls)
# Prepare launch command
cmd_to_launch_sweep = _SBATCH_CMD.format(
name=sweep_cfg.NAME,
partition=launch_cfg.PARTITION,
num_gpus=launch_cfg.NUM_GPUS,
gpu_type=launch_cfg.GPU_TYPE,
mem=launch_cfg.MEM_PER_GPU * launch_cfg.NUM_GPUS,
cpus=launch_cfg.CPUS_PER_GPU * launch_cfg.NUM_GPUS,
last_job=n_cfgs - 1,
parallel_jobs=launch_cfg.PARALLEL_JOBS,
time_limit=launch_cfg.TIME_LIMIT,
comment=launch_cfg.COMMENT,
sweep_dir=sweep_dir,
current_dir=current_dir,
conda_env=launch_cfg.CONDA_ENV,
script_path=script_path,
cfgs_dir=cfgs_dir,
pycls_dir=pycls_copy_dir,
logs_dir=logs_dir,
max_retry=launch_cfg.MAX_RETRY,
)
print("Cmd to launch sweep:", cmd_to_launch_sweep.replace(" ", "\n "), sep="\n\n")
# Prompt user to resume or launch sweep
if os.path.exists(sbatch_dir):
print("\nSweep exists! Relaunch ONLY if no jobs are running!")
print("\nRelaunch sweep? [relaunch/n]")
if input().lower() == "relaunch":
os.system(cmd_to_launch_sweep)
else:
print("\nLaunch sweep? [y/n]")
if input().lower() == "y":
os.makedirs(sbatch_dir, exist_ok=False)
os.system(cmd_to_copy_pycls)
os.system(cmd_to_launch_sweep)
def main():
desc = "Launch a sweep on the cluster."
sweep_config.load_cfg_fom_args(desc)
sweep_cfg.freeze()
sweep_launch()
if __name__ == "__main__":
main()