-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbasic_eval.py
563 lines (467 loc) · 19 KB
/
basic_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import glob
import errno
import signal
import torch
import argparse
import warnings
import functools
import itertools
import numpy as np
import pandas as pd
from p_tqdm import p_map
import cloudpickle as pickle
from scipy.spatial.distance import pdist
from scipy.spatial.distance import cdist
from scipy.stats import wasserstein_distance
from collections import Counter
from pymatgen.core.structure import Structure
from pymatgen.core.composition import Composition
from pymatgen.core.lattice import Lattice
from matminer.featurizers.site.fingerprint import CrystalNNFingerprint
from matminer.featurizers.composition.composite import ElementProperty
import smact
from smact.screening import pauling_test
from eval_util import (
chemical_symbols,
StandardScaler,
CompScalerMeans,
CompScalerStds
)
# Much of the below code is taken without modification from the original
# CDVAE repo (https://github.com/txie-93/cdvae).
# In some cases, the code has been modified to work with the structure of
# our codebase, but the logic is the same.
COV_Cutoffs = {
'mp20': {'struc': 0.4, 'comp': 10.},
'carbon': {'struc': 0.2, 'comp': 4.},
'perovskite': {'struc': 0.2, 'comp': 4},
}
NOVELTY_Cutoffs = {
'mp20': {'struc': 0.1, 'comp': 2.},
}
CompScaler = StandardScaler(
means=np.array(CompScalerMeans),
stds=np.array(CompScalerStds),
replace_nan_token=0.)
# CrystalNNFP = CrystalNNFingerprint.from_preset("ops")
CompFP = ElementProperty.from_preset('magpie')
class TimeoutError(Exception):
pass
def timeout(seconds=10, error_message=os.strerror(errno.ETIME)):
def decorator(func):
def _handle_timeout(signum, frame):
raise TimeoutError(error_message)
@functools.wraps(func)
def wrapper(*args, **kwargs):
signal.signal(signal.SIGALRM, _handle_timeout)
signal.alarm(seconds)
try:
result = func(*args, **kwargs)
finally:
signal.alarm(0)
return result
return wrapper
return decorator
@timeout(5)
def timeout_featurize(structure, i):
return CrystalNNFingerprint.from_preset("ops").featurize(structure, i)
def load_data(file_path):
if file_path[-3:] == 'npy':
data = np.load(file_path, allow_pickle=True).item()
for k, v in data.items():
if k == 'input_data_batch':
for k1, v1 in data[k].items():
data[k][k1] = torch.from_numpy(v1)
else:
data[k] = torch.from_numpy(v).unsqueeze(0)
else:
data = torch.load(file_path)
return data
def get_fp_pdist(fp_array):
if isinstance(fp_array, list):
fp_array = np.array(fp_array)
fp_pdists = pdist(fp_array)
return fp_pdists.mean()
def filter_fps(struc_fps, comp_fps):
assert len(struc_fps) == len(comp_fps)
filtered_struc_fps, filtered_comp_fps = [], []
for struc_fp, comp_fp in zip(struc_fps, comp_fps):
if struc_fp is not None and comp_fp is not None:
filtered_struc_fps.append(struc_fp)
filtered_comp_fps.append(comp_fp)
return filtered_struc_fps, filtered_comp_fps
def compute_cov(
crys,
gt_crys,
struc_cutoff,
comp_cutoff,
num_gen_crystals=None
):
struc_fps = [c.struct_fp for c in crys]
comp_fps = [c.comp_fp for c in crys]
gt_struc_fps = [c.struct_fp for c in gt_crys]
gt_comp_fps = [c.comp_fp for c in gt_crys]
assert len(struc_fps) == len(comp_fps)
assert len(gt_struc_fps) == len(gt_comp_fps)
# Use number of crystal before filtering to compute COV
if num_gen_crystals is None:
num_gen_crystals = len(struc_fps)
struc_fps, comp_fps = filter_fps(struc_fps, comp_fps)
gt_struc_fps, gt_comp_fps = filter_fps(gt_struc_fps, gt_comp_fps)
comp_fps = CompScaler.transform(comp_fps)
gt_comp_fps = CompScaler.transform(gt_comp_fps)
struc_fps = np.array(struc_fps)
gt_struc_fps = np.array(gt_struc_fps)
comp_fps = np.array(comp_fps)
gt_comp_fps = np.array(gt_comp_fps)
struc_pdist = cdist(struc_fps, gt_struc_fps)
comp_pdist = cdist(comp_fps, gt_comp_fps)
struc_recall_dist = struc_pdist.min(axis=0)
struc_precision_dist = struc_pdist.min(axis=1)
comp_recall_dist = comp_pdist.min(axis=0)
comp_precision_dist = comp_pdist.min(axis=1)
cov_recall = np.mean(np.logical_and(
struc_recall_dist <= struc_cutoff,
comp_recall_dist <= comp_cutoff))
cov_precision = np.mean(np.logical_and(
struc_precision_dist <= struc_cutoff,
comp_precision_dist <= comp_cutoff))# / num_gen_crystals
metrics_dict = {
'cov_recall': cov_recall,
'cov_precision': cov_precision,
'amsd_recall': np.mean(struc_recall_dist),
'amsd_precision': np.mean(struc_precision_dist),
'amcd_recall': np.mean(comp_recall_dist),
'amcd_precision': np.mean(comp_precision_dist),
}
combined_dist_dict = {
'struc_recall_dist': struc_recall_dist.tolist(),
'struc_precision_dist': struc_precision_dist.tolist(),
'comp_recall_dist': comp_recall_dist.tolist(),
'comp_precision_dist': comp_precision_dist.tolist(),
}
return metrics_dict, combined_dist_dict
def compute_novelty(
crys,
gt_crys,
struc_cutoff,
comp_cutoff,
num_gen_crystals=None
):
struc_fps = [c.struct_fp for c in crys]
comp_fps = [c.comp_fp for c in crys]
gt_struc_fps = [c.struct_fp for c in gt_crys]
gt_comp_fps = [c.comp_fp for c in gt_crys]
assert len(struc_fps) == len(comp_fps)
assert len(gt_struc_fps) == len(gt_comp_fps)
# Use number of crystal before filtering to compute COV
if num_gen_crystals is None:
num_gen_crystals = len(struc_fps)
struc_fps, comp_fps = filter_fps(struc_fps, comp_fps)
gt_struc_fps, gt_comp_fps = filter_fps(gt_struc_fps, gt_comp_fps)
comp_fps = CompScaler.transform(comp_fps)
gt_comp_fps = CompScaler.transform(gt_comp_fps)
struc_fps = np.array(struc_fps)
gt_struc_fps = np.array(gt_struc_fps)
comp_fps = np.array(comp_fps)
gt_comp_fps = np.array(gt_comp_fps)
struc_pdist = cdist(struc_fps, gt_struc_fps)
comp_pdist = cdist(comp_fps, gt_comp_fps)
struc_precision_dist = struc_pdist.min(axis=1)
comp_precision_dist = comp_pdist.min(axis=1)
struc_novelty = np.mean(struc_precision_dist > struc_cutoff)
comp_novelty = np.mean(comp_precision_dist > comp_cutoff)
novelty = np.mean(np.logical_or(
struc_precision_dist > struc_cutoff,
comp_precision_dist > comp_cutoff))
metrics_dict = {
'struc_novelty': struc_novelty,
'comp_novelty': comp_novelty,
'novelty': novelty,
}
return metrics_dict
class CDVAEGenEval(object):
def __init__(
self,
pred_crys,
gt_cov_crys,
gt_novelty_crys,
n_samples=1000,
eval_model_name=None
):
self.crys = pred_crys
self.gt_cov_crys = gt_cov_crys
self.gt_novelty_crys = gt_novelty_crys
self.n_samples = n_samples
self.eval_model_name = eval_model_name
valid_crys = [c for c in pred_crys if c.valid]
if len(valid_crys) >= n_samples:
sampled_indices = np.random.choice(
len(valid_crys), n_samples, replace=False)
self.valid_samples = [valid_crys[i] for i in sampled_indices]
else:
raise Exception(
f'not enough valid crystals in the predicted set: {len(valid_crys)}/{n_samples}')
def get_validity(self):
comp_valid = np.array([c.comp_valid for c in self.crys]).mean()
struct_valid = np.array([c.struct_valid for c in self.crys]).mean()
valid = np.array([c.valid for c in self.crys]).mean()
return {'comp_valid': comp_valid,
'struct_valid': struct_valid,
'valid': valid}
def get_comp_diversity(self):
comp_fps = [c.comp_fp for c in self.valid_samples]
comp_fps = CompScaler.transform(comp_fps)
comp_div = get_fp_pdist(comp_fps)
return {'comp_div': comp_div}
def get_struct_diversity(self):
return {'struct_div': get_fp_pdist([c.struct_fp for c in self.valid_samples])}
def get_density_wdist(self):
pred_densities = [c.structure.density for c in self.valid_samples]
gt_densities = [c.structure.density for c in self.gt_cov_crys]
wdist_density = wasserstein_distance(pred_densities, gt_densities)
return {'wdist_density': wdist_density}
def get_num_elem_wdist(self):
pred_nelems = [len(set(c.structure.species))
for c in self.valid_samples]
gt_nelems = [len(set(c.structure.species)) for c in self.gt_cov_crys]
wdist_num_elems = wasserstein_distance(pred_nelems, gt_nelems)
return {'wdist_num_elems': wdist_num_elems}
def get_coverage(self):
cutoff_dict = COV_Cutoffs[self.eval_model_name]
(cov_metrics_dict, combined_dist_dict) = compute_cov(
self.crys, self.gt_cov_crys,
struc_cutoff=cutoff_dict['struc'],
comp_cutoff=cutoff_dict['comp'])
return cov_metrics_dict
def get_novelty(self):
cutoff_dict = NOVELTY_Cutoffs[self.eval_model_name]
novelty_metrics_dict = compute_novelty(
self.crys, self.gt_novelty_crys,
struc_cutoff=cutoff_dict['struc'],
comp_cutoff=cutoff_dict['comp'])
return novelty_metrics_dict
def get_metrics(self):
metrics = {}
metrics.update(self.get_validity())
metrics.update(self.get_comp_diversity())
metrics.update(self.get_struct_diversity())
metrics.update(self.get_density_wdist())
metrics.update(self.get_num_elem_wdist())
metrics.update(self.get_coverage())
metrics.update(self.get_novelty())
return metrics
def smact_validity(comp, count,
use_pauling_test=True,
include_alloys=True):
elem_symbols = tuple([chemical_symbols[elem] for elem in comp])
space = smact.element_dictionary(elem_symbols)
smact_elems = [e[1] for e in space.items()]
electronegs = [e.pauling_eneg for e in smact_elems]
ox_combos = [e.oxidation_states for e in smact_elems]
if len(set(elem_symbols)) == 1:
return True
if include_alloys:
is_metal_list = [elem_s in smact.metals for elem_s in elem_symbols]
if all(is_metal_list):
return True
threshold = np.max(count)
compositions = []
for ox_states in itertools.product(*ox_combos):
stoichs = [(c,) for c in count]
# Test for charge balance
cn_e, cn_r = smact.neutral_ratios(
ox_states, stoichs=stoichs, threshold=threshold)
# Electronegativity test
if cn_e:
if use_pauling_test:
try:
electroneg_OK = pauling_test(ox_states, electronegs)
except TypeError:
# if no electronegativity data, assume it is okay
electroneg_OK = True
else:
electroneg_OK = True
if electroneg_OK:
for ratio in cn_r:
compositions.append(
tuple([elem_symbols, ox_states, ratio]))
compositions = [(i[0], i[2]) for i in compositions]
compositions = list(set(compositions))
if len(compositions) > 0:
return True
else:
return False
def structure_validity(crystal, cutoff=0.5):
dist_mat = crystal.distance_matrix
# Pad diagonal with a large number
dist_mat = dist_mat + np.diag(
np.ones(dist_mat.shape[0]) * (cutoff + 10.))
if dist_mat.min() < cutoff or crystal.volume < 0.1:
return False
else:
return True
class Crystal(object):
def __init__(self, crys_array_dict):
self.frac_coords = crys_array_dict['frac_coords']
self.atom_types = crys_array_dict['atom_types']
self.lengths = crys_array_dict['lengths']
self.angles = crys_array_dict['angles']
self.dict = crys_array_dict
self.get_structure()
self.get_composition()
self.get_validity()
if self.valid:
self.get_fingerprints()
else:
self.comp_fp = None
self.struct_fp = None
def get_structure(self):
if min(self.lengths.tolist()) < 0:
self.constructed = False
self.invalid_reason = 'non_positive_lattice'
else:
try:
self.structure = Structure(
lattice=Lattice.from_parameters(
*(self.lengths.tolist() + self.angles.tolist())),
species=self.atom_types, coords=self.frac_coords, coords_are_cartesian=False)
self.constructed = True
except Exception:
self.constructed = False
self.invalid_reason = 'construction_raises_exception'
if self.structure.volume < 0.1:
self.constructed = False
self.invalid_reason = 'unrealistically_small_lattice'
def get_composition(self):
elem_counter = Counter(self.atom_types)
composition = [(elem, elem_counter[elem])
for elem in sorted(elem_counter.keys())]
elems, counts = list(zip(*composition))
counts = np.array(counts)
counts = counts / np.gcd.reduce(counts)
self.elems = elems
self.comps = tuple(counts.astype('int').tolist())
def get_validity(self):
self.comp_valid = smact_validity(self.elems, self.comps)
if self.constructed:
self.struct_valid = structure_validity(self.structure)
else:
self.struct_valid = False
self.valid = self.comp_valid and self.struct_valid
def get_fingerprints(self):
elem_counter = Counter(self.atom_types)
comp = Composition(elem_counter)
self.comp_fp = CompFP.featurize(comp)
try:
site_fps = [timeout_featurize(
self.structure, i) for i in range(len(self.structure))]
except Exception as e:
print(e)
# counts crystal as invalid if fingerprint cannot be constructed.
self.valid = False
self.comp_fp = None
self.struct_fp = None
return
self.struct_fp = np.array(site_fps).mean(axis=0)
def cif_str_to_crystal(cif_str):
try:
structure = Structure.from_str(cif_str, fmt="cif")
crystal = Crystal({
"frac_coords": structure.frac_coords,
"atom_types": [chemical_symbols.index(str(x)) for x in structure.species],
"lengths": np.array(structure.lattice.parameters[:3]),
"angles": np.array(structure.lattice.parameters[3:])
})
except Exception as e:
print(e)
# print(cif_str)
return None
return crystal
baseline_numbers = pd.DataFrame([
{'method': 'Train', 'struct_valid': 1.0, 'comp_valid': 0.9113, 'cov_recall': 1.0, 'cov_precision': 1.0, 'wdist_density': 0.051, 'wdist_num_elems': 0.016},
{'method': 'FTCP', 'struct_valid': 0.0155, 'comp_valid': 0.4837, 'cov_recall': 0.047, 'cov_precision': 0.0009, 'wdist_density': 23.71, 'wdist_num_elems': 0.736},
{'method': 'GSchNet', 'struct_valid': 0.9965, 'comp_valid': 0.7596, 'cov_recall': 0.3833, 'cov_precision': 0.9957, 'wdist_density': 3.034, 'wdist_num_elems': 0.641},
{'method': 'PGSchNet', 'struct_valid': 0.7751, 'comp_valid': 0.7640, 'cov_recall': 0.4193, 'cov_precision': 0.9974, 'wdist_density': 4.04, 'wdist_num_elems': 0.623},
{'method': 'CDVAE', 'struct_valid': 1.0, 'comp_valid': 0.867, 'cov_recall': 0.9915, 'cov_precision': 0.9949, 'wdist_density': 0.688, 'wdist_num_elems': 1.432},
{'method': 'LM-CH', 'struct_valid': 0.8481, 'comp_valid': 0.8355, 'cov_recall': 0.9925, 'cov_precision': 0.9789, 'wdist_density': 0.864, 'wdist_num_elems': 0.132},
{'method': 'LM-AC', 'struct_valid': 0.9581, 'comp_valid': 0.8887, 'cov_recall': 0.996, 'cov_precision': 0.9855, 'wdist_density': 0.696, 'wdist_num_elems': 0.092},
])
results_df_fn = "generative_model_results.csv"
def main(args):
if os.path.exists(results_df_fn):
results_df = pd.read_csv(results_df_fn)
else:
baseline_numbers.to_csv(results_df_fn, index=False)
results_df = baseline_numbers
if args.model_name in results_df["method"].values:
print(f"Skipping {args.model_name} because it already exists in {results_df_fn}")
return
csv_fns = [
x for x in glob.glob(args.samples_path)
if len(open(x).readlines()) > 1 and 'm3gnet_relaxed_energy' not in x
]
if len(csv_fns) == 0:
return
pred_cifs = []
for x in csv_fns:
try:
df = pd.read_csv(x)
pred_cifs += list(df["cif"].dropna())
except:
pass
pred_cifs = pred_cifs[::-1]
print(len(pred_cifs))
pred_crys = [x for x in p_map(cif_str_to_crystal, pred_cifs) if x is not None]
if len(pred_crys) > 10000:
random_idx = np.random.choice(len(pred_crys), 10000)
pred_crys = [pred_crys[x] for x in random_idx]
gt_cov_cifs = pd.read_csv(args.test_cov_path)["cif"]
gt_cov_crys_fn = args.test_cov_path.replace(".csv", "_cached.pkl")
if not os.path.exists(gt_cov_crys_fn):
gt_cov_crys = p_map(cif_str_to_crystal, gt_cov_cifs)
pickle.dump(gt_cov_crys, open(gt_cov_crys_fn, "wb"))
else:
gt_cov_crys = pickle.load(open(gt_cov_crys_fn, "rb"))
gt_novelty_cifs = pd.read_csv(args.test_novelty_path)["cif"]
gt_novelty_crys_fn = args.test_novelty_path.replace(".csv", "_cached.pkl")
if not os.path.exists(gt_novelty_crys_fn):
gt_novelty_crys = p_map(cif_str_to_crystal, gt_novelty_cifs)
pickle.dump(gt_novelty_crys, open(gt_novelty_crys_fn, "wb"))
else:
gt_novelty_crys = pickle.load(open(gt_novelty_crys_fn, "rb"))
valid_crys = [x for x in pred_crys if x.valid]
print("Number of pred crystals: ", len(pred_crys))
print("Number of valid crystals: ", len(valid_crys))
metrics = CDVAEGenEval(
pred_crys,
gt_cov_crys,
gt_novelty_crys,
n_samples=len(valid_crys),
eval_model_name='mp20'
).get_metrics()
metrics = {k: v for k,v in metrics.items()}
metrics['method'] = args.model_name
results_df = pd.read_csv(results_df_fn)
results_df = pd.concat([
results_df,
pd.DataFrame([metrics])
])
results_df.to_csv(results_df_fn, index=False)
print(results_df)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--test_cov_path", type=str, default='data/basic/test.csv')
parser.add_argument("--test_novelty_path", type=str, default='data/basic/train.csv')
parser.add_argument("--samples_path", type=str, required=True)
args = parser.parse_args()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
main(args)