This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate_creative_birds.py
360 lines (322 loc) · 19.8 KB
/
generate_creative_birds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import cv2
import torch
import numpy as np
import argparse
import torchvision
from PIL import Image
from tqdm import tqdm
from pathlib import Path
from datetime import datetime
from retry.api import retry_call
from torch.utils import data
from torchvision import transforms
from part_selector import Trainer as Trainer_selector
from part_generator import Trainer as Trainer_cond_unet
from scipy.ndimage.morphology import distance_transform_edt
COLORS = {'initial':1-torch.cuda.FloatTensor([45, 169, 145]).view(1, -1, 1, 1)/255., 'eye':1-torch.cuda.FloatTensor([243, 156, 18]).view(1, -1, 1, 1)/255., 'none':1-torch.cuda.FloatTensor([149, 165, 166]).view(1, -1, 1, 1)/255.,
'beak':1-torch.cuda.FloatTensor([211, 84, 0]).view(1, -1, 1, 1)/255., 'body':1-torch.cuda.FloatTensor([41, 128, 185]).view(1, -1, 1, 1)/255., 'details':1-torch.cuda.FloatTensor([171, 190, 191]).view(1, -1, 1, 1)/255.,
'head':1-torch.cuda.FloatTensor([192, 57, 43]).view(1, -1, 1, 1)/255., 'legs':1-torch.cuda.FloatTensor([142, 68, 173]).view(1, -1, 1, 1)/255., 'mouth':1-torch.cuda.FloatTensor([39, 174, 96]).view(1, -1, 1, 1)/255.,
'tail':1-torch.cuda.FloatTensor([69, 85, 101]).view(1, -1, 1, 1)/255., 'wings':1-torch.cuda.FloatTensor([127, 140, 141]).view(1, -1, 1, 1)/255.}
class Initialstroke_Dataset(data.Dataset):
def __init__(self, folder, image_size):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for p in Path(f'{folder}').glob(f'**/*.png')]
self.transform = transforms.Compose([
transforms.ToTensor(),
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = self.transform(Image.open(path))
return img
def sample(self, n):
sample_ids = [np.random.randint(self.__len__()) for _ in range(n)]
samples = [self.transform(Image.open(self.paths[sample_id])) for sample_id in sample_ids]
return torch.stack(samples).cuda()
def load_latest(model_dir, name):
model_dir = Path(model_dir)
file_paths = [p for p in Path(model_dir / name).glob('model_*.pt')]
saved_nums = sorted(map(lambda x: int(x.stem.split('_')[1]), file_paths))
if len(saved_nums) == 0:
return
name = saved_nums[-1]
print(f'continuing from previous epoch - {name}')
return name
def noise(n, latent_dim):
return torch.randn(n, latent_dim).cuda()
def noise_list(n, layers, latent_dim):
return [(noise(n, latent_dim), layers)]
def mixed_list(n, layers, latent_dim):
tt = int(torch.rand(()).numpy() * layers)
return noise_list(n, tt, latent_dim) + noise_list(n, layers - tt, latent_dim)
def image_noise(n, im_size):
return torch.FloatTensor(n, im_size, im_size, 1).uniform_(0., 1.).cuda()
def evaluate_in_chunks(max_batch_size, model, *args):
split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
chunked_outputs = [model(*i) for i in split_args]
if len(chunked_outputs) == 1:
return chunked_outputs[0]
return torch.cat(chunked_outputs, dim=0)
def evaluate_in_chunks_unet(max_batch_size, model, map_feats, *args):
split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
split_map_feats = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), map_feats))))
chunked_outputs = [model(*i, j) for i, j in zip(split_args, split_map_feats)]
if len(chunked_outputs) == 1:
return chunked_outputs[0]
return torch.cat(chunked_outputs, dim=0)
def styles_def_to_tensor(styles_def):
return torch.cat([t[:, None, :].expand(-1, n, -1) for t, n in styles_def], dim=1)
def gs_to_rgb(image, color):
image_rgb = image.repeat(1, 3, 1, 1)
return 1-image_rgb*color
@torch.no_grad()
def generate_truncated(S, G, style, noi, trunc_psi = 0.75, num_image_tiles = 8, bitmap_feats=None, batch_size=8):
latent_dim = G.latent_dim
z = noise(2000, latent_dim)
samples = evaluate_in_chunks(batch_size, S, z).cpu().numpy()
av = np.mean(samples, axis = 0)
av = np.expand_dims(av, axis = 0)
w_space = []
for tensor, num_layers in style:
tmp = S(tensor)
av_torch = torch.from_numpy(av).cuda()
# import ipdb;ipdb.set_trace()
tmp = trunc_psi * (tmp - av_torch) + av_torch
w_space.append((tmp, num_layers))
w_styles = styles_def_to_tensor(w_space)
generated_images = evaluate_in_chunks_unet(batch_size, G, bitmap_feats, w_styles, noi)
return generated_images.clamp_(0., 1.)
@torch.no_grad()
def generate_part(model, partial_image, partial_rgb, color=None, percentage=20, num=0, num_image_tiles=8, trunc_psi=1., save_img=False, results_dir='../results', evolvement=False):
model.eval()
ext = 'png'
num_rows = np.sqrt(num_image_tiles)
latent_dim = model.G.latent_dim
image_size = model.G.image_size
num_layers = model.G.num_layers
if percentage == 'eye':
n_eye = 10
generated_partial_images_candidates = []
scores = torch.zeros(n_eye)
for _ in range(n_eye):
latents_z = noise_list(num_image_tiles, num_layers, latent_dim)
n = image_noise(num_image_tiles, image_size)
image_partial_batch = partial_image[:, -1:, :, :]
bitmap_feats = model.Enc(partial_image)
generated_partial_images = generate_truncated(model.S, model.G, latents_z, n, trunc_psi = trunc_psi, bitmap_feats=bitmap_feats)
generated_partial_images_candidates.append(generated_partial_images)
generated_partial_images_candidates = torch.cat(generated_partial_images_candidates, 0)
# eye size rank
n_pixels = generated_partial_images_candidates.sum(-1).sum(-1).sum(-1) # B
for rank, i_eye in enumerate(torch.argsort(n_pixels, descending=True)):
scores[i_eye] += (rank+1)/n_eye
# eye distance rank
initial_stroke = partial_image[:, :1].cpu().data.numpy()
initial_stroke_dt = torch.cuda.FloatTensor(distance_transform_edt(1-initial_stroke))
dt_pixels = (generated_partial_images_candidates*initial_stroke_dt).sum(-1).sum(-1).sum(-1) # B
for rank, i_eye in enumerate(torch.argsort(dt_pixels, descending=False)): # the smaller the better
if n_pixels[i_eye] > 3:
scores[i_eye] += (rank+1)/n_eye
generated_partial_images = generated_partial_images_candidates[torch.argsort(scores, descending=True)[0]].unsqueeze(0)
else:
# latents and noise
latents_z = noise_list(num_image_tiles, num_layers, latent_dim)
n = image_noise(num_image_tiles, image_size)
image_partial_batch = partial_image[:, -1:, :, :]
bitmap_feats = model.Enc(partial_image)
generated_partial_images = generate_truncated(model.S, model.G, latents_z, n, trunc_psi = trunc_psi, bitmap_feats=bitmap_feats)
# regular
generated_partial_images = generate_truncated(model.S, model.G, latents_z, n, trunc_psi = trunc_psi, bitmap_feats=bitmap_feats)
generated_partial_rgb = gs_to_rgb(generated_partial_images, color)
generated_images = generated_partial_images + image_partial_batch
generated_rgb = 1 - ((1-generated_partial_rgb)+(1-partial_rgb))
if save_img:
torchvision.utils.save_image(generated_partial_rgb, os.path.join(results_dir, f'{str(num)}-{percentage}-comp.{ext}'), nrow=num_rows)
torchvision.utils.save_image(generated_rgb, os.path.join(results_dir, f'{str(num)}-{percentage}.{ext}'), nrow=num_rows)
return generated_partial_images.clamp_(0., 1.), generated_images.clamp_(0., 1.), generated_partial_rgb.clamp_(0., 1.), generated_rgb.clamp_(0., 1.)
def train_from_folder(
data_path = '../../data',
results_dir = '../../results',
models_dir = '../../models',
n_part = 1,
image_size = 128,
network_capacity = 16,
batch_size = 3,
num_image_tiles = 8,
trunc_psi = 0.75,
generate_all=False,
):
min_step = 299
name_eye='short_bird_creative_sequential_r6_partstack_aug_eye_unet2_largeaug'
load_from = load_latest(models_dir, name_eye)
load_from = min(min_step, load_from)
model_eye = Trainer_cond_unet(name_eye, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_eye.load_config()
model_eye.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_eye, load_from)))
name_head='short_bird_creative_sequential_r6_partstack_aug_head_unet2'
load_from = load_latest(models_dir, name_head)
load_from = min(min_step, load_from)
model_head = Trainer_cond_unet(name_head, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_head.load_config()
model_head.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_head, load_from)))
name_body='short_bird_creative_sequential_r6_partstack_aug_body_unet2'
load_from = load_latest(models_dir, name_body)
load_from = min(min_step, load_from)
model_body = Trainer_cond_unet(name_body, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_body.load_config()
model_body.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_body, load_from)))
name_beak='short_bird_creative_sequential_r6_partstack_aug_beak_unet2'
load_from = load_latest(models_dir, name_beak)
load_from = min(min_step, load_from)
model_beak = Trainer_cond_unet(name_beak, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_beak.load_config()
model_beak.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_beak, load_from)))
name_legs='short_bird_creative_sequential_r6_partstack_aug_legs_unet2'
load_from = load_latest(models_dir, name_legs)
load_from = min(min_step, load_from)
model_legs = Trainer_cond_unet(name_legs, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_legs.load_config()
model_legs.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_legs, load_from)))
name_wings='short_bird_creative_sequential_r6_partstack_aug_wings_unet2'
load_from = load_latest(models_dir, name_wings)
load_from = min(min_step, load_from)
model_wings = Trainer_cond_unet(name_wings, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_wings.load_config()
model_wings.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_wings, load_from)))
name_mouth='short_bird_creative_sequential_r6_partstack_aug_mouth_unet2'
load_from = load_latest(models_dir, name_mouth)
load_from = min(min_step, load_from)
model_mouth = Trainer_cond_unet(name_mouth, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_mouth.load_config()
model_mouth.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_mouth, load_from)))
name_tail='short_bird_creative_sequential_r6_partstack_aug_tail_unet2'
load_from = load_latest(models_dir, name_tail)
load_from = min(min_step, load_from)
model_tail = Trainer_cond_unet(name_tail, results_dir, models_dir, n_part=n_part, batch_size=batch_size, image_size=image_size, network_capacity=network_capacity)
model_tail.load_config()
model_tail.GAN.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_tail, load_from)))
name_selector='short_bird_creative_selector_aug'
load_from = load_latest(models_dir, name_selector)
part_selector = Trainer_selector(name_selector, results_dir, models_dir, n_part=n_part, batch_size = batch_size, image_size = image_size, network_capacity = network_capacity)
part_selector.load_config()
part_selector.clf.load_state_dict(torch.load('%s/%s/model_%d.pt'%(models_dir, name_selector, load_from)))
if not os.path.exists(results_dir):
os.mkdir(results_dir)
inital_dir = '%s/bird_short_test_init_strokes_%d'%(data_path, image_size)
dataset = Initialstroke_Dataset(inital_dir, image_size=image_size)
dataloader = data.DataLoader(dataset, num_workers=5, batch_size=batch_size, drop_last=False, shuffle=False, pin_memory=True)
# import ipdb;ipdb.set_trace()
models = [model_eye, model_head, model_body, model_beak, model_legs, model_wings, model_mouth, model_tail]
target_parts = ['eye', 'head', 'body', 'beak', 'legs', 'wings', 'mouth', 'tail', 'none']
part_to_id = {'initial': 0, 'eye': 1, 'head': 4, 'body': 3, 'beak': 2, 'legs': 5, 'wings': 8, 'mouth': 6, 'tail': 7}
max_iter = 10
if generate_all:
generation_dir = os.path.join(results_dir, 'DoodlerGAN_all')
if not os.path.exists(generation_dir):
os.mkdir(generation_dir)
os.mkdir(os.path.join(generation_dir, 'bw'))
os.mkdir(os.path.join(generation_dir, 'color_initial'))
os.mkdir(os.path.join(generation_dir, 'color'))
for count, initial_strokes in enumerate(dataloader):
initial_strokes = initial_strokes.cuda()
start_point = len(os.listdir(os.path.join(generation_dir, 'bw')))
print('%d sketches generated'%start_point)
for i in range(batch_size):
samples_name = f'generated-{start_point+i}'
stack_parts = torch.zeros(1, 10, image_size, image_size).cuda()
initial_strokes_rgb = gs_to_rgb(initial_strokes[i], COLORS['initial'])
stack_parts[:, 0] = initial_strokes[i, 0]
stack_parts[:, -1] = initial_strokes[i, 0]
partial_rgbs = initial_strokes_rgb.clone()
prev_part = []
for iter_i in range(max_iter):
outputs = part_selector.clf.D(stack_parts)
part_rgbs = torch.ones(1, 3, image_size, image_size).cuda()
select_part_order = 0
select_part_ids = torch.topk(outputs, k=8, dim=0)[1]
select_part_id = select_part_ids[select_part_order].item()
select_part = target_parts[select_part_id]
while (select_part == 'none' and iter_i < 6 or select_part in prev_part):
select_part_order += 1
if select_part_order > 7:
import ipdb;ipdb.set_trace()
select_part_id = select_part_ids[select_part_order].item()
select_part = target_parts[select_part_id]
if select_part == 'none':
break
prev_part.append(select_part)
sketch_rgb = partial_rgbs
stack_part = stack_parts.clone()
select_model = models[select_part_id]
part, partial, part_rgb, partial_rgb = generate_part(select_model.GAN, stack_part, sketch_rgb, COLORS[select_part], select_part, samples_name, 1, results_dir=results_dir, trunc_psi=0.1)
stack_parts[0, part_to_id[select_part]] = part[0, 0]
partial_rgbs[0] = partial_rgb[0]
stack_parts[0, -1] = partial[0, 0]
part_rgbs[0] = part_rgb[0]
initial_colored_full = np.tile(np.max(stack_parts.cpu().data.numpy()[:, 1:-1], 1), [3, 1, 1])
initial_colored_full = 1-np.max(np.stack([1-initial_strokes_rgb.cpu().data.numpy()[0], initial_colored_full]), 0)
cv2.imwrite(os.path.join(generation_dir, 'bw', f'{str(samples_name)}.png'), (1-stack_parts[0, -1].cpu().data.numpy())*255.)
cv2.imwrite(os.path.join(generation_dir, 'color_initial', f'{str(samples_name)}-color.png'), cv2.cvtColor(initial_colored_full.transpose(1, 2, 0)*255., cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(generation_dir, 'color', f'{str(samples_name)}-color.png'), cv2.cvtColor(partial_rgbs[0].cpu().data.numpy().transpose(1, 2, 0)*255., cv2.COLOR_RGB2BGR))
else:
now = datetime.now()
timestamp = now.strftime("%m-%d-%Y_%H-%M-%S")
stack_parts = torch.zeros(num_image_tiles*num_image_tiles, 10, image_size, image_size).cuda()
initial_strokes = dataset.sample(num_image_tiles*num_image_tiles).cuda()
initial_strokes_rgb = gs_to_rgb(initial_strokes, COLORS['initial'])
stack_parts[:, 0] = initial_strokes[:, 0]
stack_parts[:, -1] = initial_strokes[:, 0]
partial_rgbs = initial_strokes_rgb.clone()
partial_rgbs_variation = initial_strokes_rgb.clone()
prev_parts = [[] for _ in range(num_image_tiles**2)]
samples_name = f'generated-{timestamp}-{min_step}'
for iter_i in range(max_iter):
outputs = part_selector.clf.D(stack_parts)
part_rgbs = torch.ones(num_image_tiles*num_image_tiles, 3, image_size, image_size).cuda()
for i in range(num_image_tiles**2):
prev_part = prev_parts[i]
select_part_order = 0
select_part_ids = torch.topk(outputs[i], k=9, dim=0)[1]
select_part_id = select_part_ids[select_part_order].item()
select_part = target_parts[select_part_id]
while (select_part == 'none' and iter_i < 6 or select_part in prev_part):
select_part_order += 1
select_part_id = select_part_ids[select_part_order].item()
select_part = target_parts[select_part_id]
if select_part == 'none':
break
prev_parts[i].append(select_part)
sketch_rgb = partial_rgbs[i].clone().unsqueeze(0)
stack_part = stack_parts[i].unsqueeze(0)
select_model = models[select_part_id]
part, partial, part_rgb, partial_rgb = generate_part(select_model.GAN, stack_part, sketch_rgb, COLORS[select_part], select_part, samples_name, 1, results_dir=results_dir, trunc_psi=0.1)
stack_parts[i, part_to_id[select_part]] = part[0, 0]
stack_parts[i, -1] = partial[0, 0]
partial_rgbs[i] = partial_rgb[0]
part_rgbs[i] = part_rgb[0]
torchvision.utils.save_image(partial_rgbs, os.path.join(results_dir, f'{str(samples_name)}-{str(min_step)}-round{iter_i}.png'), nrow=num_image_tiles)
torchvision.utils.save_image(part_rgbs, os.path.join(results_dir, f'{str(samples_name)}-{str(min_step)}-part-round{iter_i}.png'), nrow=num_image_tiles)
torchvision.utils.save_image(1-stack_parts[:, -1:], os.path.join(results_dir, f'{str(samples_name)}-{str(min_step)}-final_pred.png'), nrow=num_image_tiles)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default='../data')
parser.add_argument("--results_dir", type=str, default='../results/creative_bird_generation')
parser.add_argument("--models_dir", type=str, default='../models')
parser.add_argument('--n_part', type=int, default=10)
parser.add_argument('--image_size', type=int, default=64)
parser.add_argument('--network_capacity', type=int, default=16)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--num_image_tiles', type=int, default=8)
parser.add_argument('--trunc_psi', type=float, default=1.)
parser.add_argument('--generate_all', action='store_true')
args = parser.parse_args()
print(args)
train_from_folder(args.data_dir, args.results_dir, args.models_dir, args.n_part, args.image_size, args.network_capacity,
args.batch_size, args.num_image_tiles, args.trunc_psi, args.generate_all)