-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtransforms.py
977 lines (772 loc) · 33.4 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import random
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
from augly import utils
from augly.audio import functional as F
from augly.audio.utils import RNGSeed
"""
Base Classes for Transforms
"""
class BaseTransform:
def __init__(self, p: float = 1.0):
"""
@param p: the probability of the transform being applied; default value is 1.0
"""
assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]"
self.p = p
def __call__(
self,
audio: np.ndarray,
sample_rate: int = utils.DEFAULT_SAMPLE_RATE,
metadata: Optional[List[Dict[str, Any]]] = None,
force: bool = False,
) -> Tuple[np.ndarray, int]:
"""
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@param force: if set to True, the transform will be applied. otherwise,
application is determined by the probability set
@returns: the augmented audio array and sample rate
"""
assert isinstance(audio, np.ndarray), "Audio passed in must be a np.ndarray"
assert type(force) == bool, "Expected type bool for variable `force`"
if not force and random.random() > self.p:
return audio, sample_rate
return self.apply_transform(audio, sample_rate, metadata)
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
This function is to be implemented in the child classes.
From this function, call the augmentation function with the
parameters specified
"""
raise NotImplementedError()
"""
Non-Random Transforms
These classes below are essentially class-based versions of the augmentation
functions previously defined. These classes were developed such that they can
be used with Composition operators (such as `torchvision`'s) and to support
use cases where a specific transform with specific attributes needs to be
applied multiple times.
Example:
>>> audio_array = np.array([...])
>>> pitch_shift_tsfm = PitchShift(n_steps=4.0, p=0.5)
>>> shifted_audio = pitch_shift_tsfm(audio_array, sample_rate)
"""
class AddBackgroundNoise(BaseTransform):
def __init__(
self,
background_audio: Optional[Union[str, np.ndarray]] = None,
snr_level_db: float = 10.0,
seed: Optional[RNGSeed] = None,
p: float = 1.0,
):
"""
@param background_audio: the path to the background audio or a variable of type
np.ndarray containing the background audio. If set to `None`, the background
audio will be white noise
@param snr_level_db: signal-to-noise ratio in dB
@param seed: a NumPy random generator (or seed) such that these results
remain reproducible
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.background_audio = background_audio
self.snr_level_db = snr_level_db
self.seed = seed
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Mixes in a background sound into the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.add_background_noise(
audio,
sample_rate,
self.background_audio,
self.snr_level_db,
self.seed,
metadata=metadata,
)
class ApplyLambda(BaseTransform):
def __init__(
self,
aug_function: Callable[..., Tuple[np.ndarray, int]] = lambda x, y: (x, y),
p: float = 1.0,
):
"""
@param aug_function: the augmentation function to be applied onto the audio
(should expect the audio np.ndarray & sample rate int as input, and return
the transformed audio & sample rate)
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_function = aug_function
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Apply a user-defined lambda to the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.apply_lambda(audio, sample_rate, self.aug_function, metadata=metadata)
class ChangeVolume(BaseTransform):
def __init__(self, volume_db: float = 0.0, p: float = 1.0):
"""
@param volume_db: the decibel amount by which to either increase (positive
value) or decrease (negative value) the volume of the audio
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.volume_db = volume_db
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Changes the volume of the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.change_volume(audio, sample_rate, self.volume_db, metadata=metadata)
class Clicks(BaseTransform):
def __init__(self, seconds_between_clicks: float = 0.5, p: float = 1.0):
"""
@param seconds_between_clicks: the amount of time between each click that will
be added to the audio, in seconds
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.seconds_between_clicks = seconds_between_clicks
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Adds clicks to the audio at a given regular interval
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.clicks(
audio, sample_rate, self.seconds_between_clicks, metadata=metadata
)
class Clip(BaseTransform):
def __init__(
self, offset_factor: float = 0.0, duration_factor: float = 1.0, p: float = 1.0
):
"""
@param offset_factor: start point of the crop relative to the audio duration
(this parameter is multiplied by the audio duration)
@param duration_factor: the length of the crop relative to the audio duration
(this parameter is multiplied by the audio duration)
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.offset_factor = offset_factor
self.duration_factor = duration_factor
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Clips the audio using the specified offset and duration factors
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.clip(
audio,
sample_rate,
self.offset_factor,
self.duration_factor,
metadata=metadata,
)
class Harmonic(BaseTransform):
def __init__(
self,
kernel_size: int = 31,
power: float = 2.0,
margin: float = 1.0,
p: float = 1.0,
):
"""
@param kernel_size: kernel size for the median filters
@param power: exponent for the Wiener filter when constructing soft mask matrices
@param margin: margin size for the masks
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.kernel_size = kernel_size
self.power = power
self.margin = margin
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Extracts the harmonic part of the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.harmonic(
audio,
sample_rate,
self.kernel_size,
self.power,
self.margin,
metadata=metadata,
)
class HighPassFilter(BaseTransform):
def __init__(self, cutoff_hz: float = 3000.0, p: float = 1.0):
"""
@param cutoff_hz: frequency (in Hz) where signals with lower frequencies will
begin to be reduced by 6dB per octave (doubling in frequency) below this point
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.cutoff_hz = cutoff_hz
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Allows audio signals with a frequency higher than the given cutoff to pass
through and attenuates signals with frequencies lower than the cutoff frequency
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.high_pass_filter(audio, sample_rate, self.cutoff_hz, metadata=metadata)
class InsertInBackground(BaseTransform):
def __init__(
self,
offset_factor: float = 0.0,
background_audio: Optional[Union[str, np.ndarray]] = None,
seed: Optional[RNGSeed] = None,
p: float = 1.0,
):
"""
@param offset_factor: start point of the crop relative to the background duration
(this parameter is multiplied by the background duration)
@param background_audio: the path to the background audio or a variable of type
np.ndarray containing the background audio. If set to `None`, the background
audio will be white noise
@param seed: a NumPy random generator (or seed) such that these results
remain reproducible
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.offset_factor = offset_factor
self.background_audio = background_audio
self.seed = seed
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Non-overlapping insert audio in a background audio.
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.insert_in_background(
audio,
sample_rate,
self.offset_factor,
self.background_audio,
self.seed,
metadata=metadata,
)
class InvertChannels(BaseTransform):
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Inverts the channels of the audio.
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.invert_channels(audio, sample_rate, metadata=metadata)
class Loop(BaseTransform):
def __init__(self, n: int = 1, p: float = 1.0):
"""
@param n: the number of times the audio will be looped
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.n = n
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Loops the audio 'n' times
@param audio: the path to the audio or a variable of type np.ndarray that
will be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.loop(audio, sample_rate, self.n, metadata=metadata)
class LowPassFilter(BaseTransform):
def __init__(self, cutoff_hz: float = 500.0, p: float = 1.0):
"""
@param cutoff_hz: frequency (in Hz) where signals with higher frequencies will
begin to be reduced by 6dB per octave (doubling in frequency) above this point
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.cutoff_hz = cutoff_hz
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Allows audio signals with a frequency lower than the given cutoff to pass through
and attenuates signals with frequencies higher than the cutoff frequency
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.low_pass_filter(audio, sample_rate, self.cutoff_hz, metadata=metadata)
class Normalize(BaseTransform):
def __init__(
self,
norm: Optional[float] = np.inf,
axis: int = 0,
threshold: Optional[float] = None,
fill: Optional[bool] = None,
p: float = 1.0,
):
"""
@param norm: the type of norm to compute:
- np.inf: maximum absolute value
- -np.inf: minimum absolute value
- 0: number of non-zeros (the support)
- float: corresponding l_p norm
- None: no normalization is performed
@param axis: axis along which to compute the norm
@param threshold: if provided, only the columns (or rows) with norm of at
least `threshold` are normalized
@param fill: if None, then columns (or rows) with norm below `threshold` are
left as is. If False, then columns (rows) with norm below `threshold` are
set to 0. If True, then columns (rows) with norm below `threshold` are
filled uniformly such that the corresponding norm is 1
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.norm, self.axis = norm, axis
self.threshold, self.fill = threshold, fill
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Normalizes the audio array along the chosen axis (norm(audio, axis=axis) == 1)
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.normalize(
audio,
sample_rate,
self.norm,
self.axis,
self.threshold,
self.fill,
metadata=metadata,
)
class PeakingEqualizer(BaseTransform):
def __init__(
self,
center_hz: float = 500.0,
q: float = 1.0,
gain_db: float = -3.0,
p: float = 1.0,
):
"""
@param center_hz: point in the frequency spectrum at which EQ is applied
@param q: ratio of center frequency to bandwidth; bandwidth is inversely
proportional to Q, meaning that as you raise Q, you narrow the bandwidth
@param gain_db: amount of gain (boost) or reduction (cut) that is applied
at a given frequency. Beware of clipping when using positive gain
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.center_hz = center_hz
self.q = q
self.gain_db = gain_db
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Applies a two-pole peaking equalization filter. The signal-level at and around
`center_hz` can be increased or decreased, while all other frequencies are unchanged
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.peaking_equalizer(
audio, sample_rate, self.center_hz, self.q, self.gain_db, metadata=metadata
)
class Percussive(BaseTransform):
def __init__(
self,
kernel_size: int = 31,
power: float = 2.0,
margin: float = 1.0,
p: float = 1.0,
):
"""
@param kernel_size: kernel size for the median filters
@param power: exponent for the Wiener filter when constructing soft mask matrices
@param margin: margin size for the masks
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.kernel_size = kernel_size
self.power = power
self.margin = margin
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Extracts the percussive part of the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.percussive(
audio,
sample_rate,
self.kernel_size,
self.power,
self.margin,
metadata=metadata,
)
class PitchShift(BaseTransform):
def __init__(self, n_steps: float = 1.0, p: float = 1.0):
"""
@param n_steps: each step is equal to one semitone
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.n_steps = n_steps
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Shifts the pitch of the audio by `n_steps`
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.pitch_shift(audio, sample_rate, self.n_steps, metadata=metadata)
class Reverb(BaseTransform):
def __init__(
self,
reverberance: float = 50.0,
hf_damping: float = 50.0,
room_scale: float = 100.0,
stereo_depth: float = 100.0,
pre_delay: float = 0.0,
wet_gain: float = 0.0,
wet_only: bool = False,
p: float = 1.0,
):
"""
@param reverberance: (%) sets the length of the reverberation tail. This
determines how long the reverberation continues for after the original
sound being reverbed comes to an end, and so simulates the "liveliness"
of the room acoustics
@param hf_damping: (%) increasing the damping produces a more "muted" effect.
The reverberation does not build up as much, and the high frequencies decay
faster than the low frequencies
@param room_scale: (%) sets the size of the simulated room. A high value will
simulate the reverberation effect of a large room and a low value will
simulate the effect of a small room
@param stereo_depth: (%) sets the apparent "width" of the reverb effect for
stereo tracks only. Increasing this value applies more variation between
left and right channels, creating a more "spacious" effect. When set at
zero, the effect is applied independently to left and right channels
@param pre_delay: (ms) delays the onset of the reverberation for the set time
after the start of the original input. This also delays the onset of the
reverb tail
@param wet_gain: (db) applies volume adjustment to the reverberation ("wet")
component in the mix
@param wet_only: only the wet signal (added reverberation) will be in the
resulting output, and the original audio will be removed
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.reverberance = reverberance
self.hf_damping = hf_damping
self.room_scale = room_scale
self.stereo_depth = stereo_depth
self.pre_delay = pre_delay
self.wet_gain = wet_gain
self.wet_only = wet_only
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Adds reverberation to the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.reverb(
audio,
sample_rate,
self.reverberance,
self.hf_damping,
self.room_scale,
self.stereo_depth,
self.pre_delay,
self.wet_gain,
self.wet_only,
metadata=metadata,
)
class Speed(BaseTransform):
def __init__(self, factor: float = 2.0, p: float = 1.0):
"""
@param factor: the speed factor. If rate > 1 the audio will be sped up by that
factor; if rate < 1 the audio will be slowed down by that factor
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.factor = factor
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Changes the speed of the audio, affecting pitch as well
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.speed(audio, sample_rate, self.factor, metadata=metadata)
class Tempo(BaseTransform):
def __init__(self, factor: float = 2.0, p: float = 1.0):
"""
@param factor: the tempo factor. If rate > 1 the audio will be sped up by that
factor; if rate < 1 the audio will be slowed down by that factor, without
affecting the pitch
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.factor = factor
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Adjusts the tempo of the audio by a given factor
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.tempo(audio, sample_rate, self.factor, metadata=metadata)
class TimeStretch(BaseTransform):
def __init__(self, rate: float = 1.5, p: float = 1.0):
"""
@param rate: the time stretch factor
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.rate = rate
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Time-stretches the audio by a fixed rate
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.time_stretch(audio, sample_rate, self.rate, metadata=metadata)
class ToMono(BaseTransform):
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Converts the audio from stereo to mono by averaging samples across channels
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.to_mono(audio, sample_rate, metadata=metadata)
class FFTConvolve(BaseTransform):
def __init__(
self,
normalize: bool = True,
impulse_audio: Optional[Union[str, np.ndarray]] = None,
seed: Optional[RNGSeed] = None,
p: float = 1.0,
):
"""
@param normalize: if True, normalize the output to the maximum amplitude
@param impulse_audio: the path to the audio or a variable of type np.ndarray that
will be used as the convolution filter
@param seed: the seed for the random number generator
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.impulse_audio = impulse_audio
self.seed = seed
self.normalize = normalize
def apply_transform(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Applies a convolution to input tensor using given filter using FFT
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
return F.fft_convolve(
audio,
sample_rate,
self.normalize,
self.impulse_audio,
self.seed,
metadata=metadata,
)