-
Notifications
You must be signed in to change notification settings - Fork 303
/
composition.py
120 lines (92 loc) · 3.95 KB
/
composition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import random
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
from augly.audio.transforms import BaseTransform
"""
Composition Operators:
Compose: identical to the Compose object provided by the torchvision
library, this class provides a similar experience for applying multiple
transformations onto audio
OneOf: the OneOf operator takes as input a list of transforms and
may apply (with probability p) one of the transforms in the list.
If a transform is applied, it is selected using the specified
probabilities of the individual transforms.
Example:
>>> Compose([
>>> Clip(duration_factor=0.5),
>>> VolumeChange(volume_db=10.0),
>>> OneOf([
>>> PitchShift(n_steps=4.0),
>>> TimeStretch(rate=1.5),
>>> ]),
>>> ])
"""
class BaseComposition:
def __init__(self, transforms: List[BaseTransform], p: float = 1.0):
"""
@param transforms: a list of transforms
@param p: the probability of the transform being applied; default value is 1.0
"""
for transform in transforms:
assert isinstance(
transform, (BaseTransform, BaseComposition)
), "Expected instances of type `BaseTransform` or `BaseComposition` for variable `transforms`" # noqa: B950
assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]"
self.transforms = transforms
self.p = p
class Compose(BaseComposition):
def __call__(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Applies the list of transforms in order to the audio
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
for transform in self.transforms:
audio, sample_rate = transform(audio, sample_rate, metadata)
return audio, sample_rate
class OneOf(BaseComposition):
def __init__(self, transforms: List[BaseTransform], p: float = 1.0):
"""
@param transforms: a list of transforms to select from; one of which will
be chosen to be applied to the audio
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(transforms, p)
transform_probs = [t.p for t in transforms]
probs_sum = sum(transform_probs)
self.transform_probs = [t / probs_sum for t in transform_probs]
def __call__(
self,
audio: np.ndarray,
sample_rate: int,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[np.ndarray, int]:
"""
Applies one of the transforms to the audio (with probability p)
@param audio: the audio array to be augmented
@param sample_rate: the audio sample rate of the inputted audio
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest duration, sample rates, etc. will be
appended to the inputted list. If set to None, no metadata will be appended
@returns: the augmented audio array and sample rate
"""
if random.random() > self.p:
return audio, sample_rate
transform = random.choices(self.transforms, self.transform_probs)[0]
return transform(audio, sample_rate, metadata, force=True)