This repository has been archived by the owner on Nov 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathmakedata.lua
103 lines (94 loc) · 4.23 KB
/
makedata.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
--
-- Copyright (c) 2015, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Author: Marc'Aurelio Ranzato <ranzato@fb.com>
-- Sumit Chopra <spchopra@fb.com>
-- Michael Auli <michaelauli@fb.com>
-- Wojciech Zaremba <zaremba@cs.nyu.edu>
--
-- Script to create torch data set from text files of source-target pair
-- sentences. It creates the source and target dictionaries, and the train,
-- valid and test torch files.
require 'math'
require 'sys'
require 'os'
require 'torch'
require 'xlua'
local tok = paths.dofile('tokenizer.lua')
torch.manualSeed(1)
cmd = torch.CmdLine()
cmd.argseparator = '_'
cmd:text()
cmd:text('Make dictionary and datasets')
cmd:text()
cmd:text('Options:')
cmd:option('-srcDir', 'prep', 'path to pre-processed data.')
cmd:option('-dstDir', 'data', 'path to where dictionaries and datasets ' ..
'should be written.')
cmd:option('-shuff', true, 'shuffle sentences in training data or not')
cmd:option('-threshold', 3, 'remove words appearing less than threshold')
cmd:option('-isvalid', true, 'generate the validation set')
cmd:option('-istest', true, 'generate the test set')
cmd:text()
local opt = cmd:parse(arg)
if not paths.dirp(opt.dstDir) then os.execute('mkdir -p ' .. opt.dstDir) end
local config_data = {
root_path = opt.srcDir,
dest_path = opt.dstDir,
threshold = opt.threshold,
targets = {train = 'train.de-en.en',
valid = 'valid.de-en.en',
test = 'test.de-en.en'},
sources = {train = 'train.de-en.de',
valid = 'valid.de-en.de',
test = 'test.de-en.de'},
}
-- build and save the dictionaries
local tdict_path = paths.concat(opt.dstDir, 'dict.target.th7')
local sdict_path = paths.concat(opt.dstDir, 'dict.source.th7')
local target_dict, source_dict
print('-- building target dictionary')
local train_target = paths.concat(opt.srcDir, config_data.targets['train'])
target_dict = tok.build_dictionary(train_target, config_data.threshold)
torch.save(tdict_path, target_dict)
print('-- building source dictionary')
local train_source = paths.concat(opt.srcDir, config_data.sources['train'])
source_dict = tok.build_dictionary(train_source, config_data.threshold)
torch.save(sdict_path, source_dict)
-- now create the binned training data: target sentences corresponding to
-- each length of the source sentence are binned together
local train_targets_path = paths.concat(config_data.dest_path,
'train.targets.th7')
local train_sources_path = paths.concat(config_data.dest_path,
'train.sources.th7')
local valid_targets_path = paths.concat(config_data.dest_path,
'valid.targets.th7')
local valid_sources_path = paths.concat(config_data.dest_path,
'valid.sources.th7')
local test_targets_path = paths.concat(config_data.dest_path,
'test.targets.th7')
local test_sources_path = paths.concat(config_data.dest_path,
'test.sources.th7')
print('tokenizing train...')
local train_targets, train_sources = tok.tokenize(config_data, 'train',
target_dict, source_dict,
opt.shuff)
print('tokenizing valid...')
local valid_targets, valid_sources = tok.tokenize(config_data, 'valid',
target_dict, source_dict,
false)
print('tokenizing test...')
local test_targets, test_sources = tok.tokenize(config_data, 'test',
target_dict, source_dict,
false)
torch.save(train_targets_path, train_targets)
torch.save(train_sources_path, train_sources)
torch.save(valid_targets_path, valid_targets)
torch.save(valid_sources_path, valid_sources)
torch.save(test_targets_path, test_targets)
torch.save(test_sources_path, test_sources)