-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathdecoder.py
1130 lines (1039 loc) · 43 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
import datetime
from collections import OrderedDict
from dataclasses import dataclass
from enum import Enum
from functools import partial
from inspect import isclass
from io import StringIO
from logging import Logger
from typing import Any
import numpy as np
import pandas as pd
import torch
from ax.core.base_trial import BaseTrial
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import GeneratorRun
from ax.core.multi_type_experiment import MultiTypeExperiment
from ax.core.objective import Objective
from ax.core.parameter import Parameter
from ax.core.parameter_constraint import (
OrderConstraint,
ParameterConstraint,
SumConstraint,
)
from ax.core.search_space import SearchSpace
from ax.exceptions.storage import JSONDecodeError, STORAGE_DOCS_SUFFIX
from ax.generation_strategy.generation_node_input_constructors import (
InputConstructorPurpose,
)
from ax.generation_strategy.generation_strategy import (
GenerationNode,
GenerationStep,
GenerationStrategy,
)
from ax.generation_strategy.model_spec import GeneratorSpec
from ax.generation_strategy.transition_criterion import (
AuxiliaryExperimentCheck,
TransitionCriterion,
TrialBasedCriterion,
)
from ax.modelbridge.registry import _decode_callables_from_references, ModelRegistryBase
from ax.models.torch.botorch_modular.surrogate import Surrogate, SurrogateSpec
from ax.models.torch.botorch_modular.utils import ModelConfig
from ax.storage.json_store.decoders import (
batch_trial_from_json,
botorch_component_from_json,
tensor_from_json,
trial_from_json,
)
from ax.storage.json_store.registry import (
CORE_CLASS_DECODER_REGISTRY,
CORE_DECODER_REGISTRY,
)
from ax.utils.common.logger import get_logger
from ax.utils.common.serialization import (
SerializationMixin,
TClassDecoderRegistry,
TDecoderRegistry,
)
from ax.utils.common.typeutils_torch import torch_type_from_str
from pyre_extensions import assert_is_instance, none_throws
logger: Logger = get_logger(__name__)
# Deprecated model registry entries and their replacements.
# Used below in `_update_deprecated_model_registry`.
_DEPRECATED_MODEL_TO_REPLACEMENT: dict[str, str] = {
"GPEI": "BOTORCH_MODULAR",
"MOO": "BOTORCH_MODULAR",
"FULLYBAYESIAN": "SAASBO",
"FULLYBAYESIANMOO": "SAASBO",
"FULLYBAYESIAN_MTGP": "SAAS_MTGP",
"FULLYBAYESIANMOO_MTGP": "SAAS_MTGP",
"ST_MTGP_LEGACY": "ST_MTGP",
"ST_MTGP_NEHVI": "ST_MTGP",
}
# Deprecated model kwargs, to be removed from GStep / GNodes.
_DEPRECATED_MODEL_KWARGS: tuple[str, ...] = (
"fit_on_update",
"torch_dtype",
"status_quo_name",
)
@dataclass
class RegistryKwargs:
decoder_registry: TDecoderRegistry
class_decoder_registry: TClassDecoderRegistry
# pyre-fixme[3]: Return annotation cannot be `Any`.
def object_from_json(
# pyre-fixme[2]: Parameter annotation cannot be `Any`.
object_json: Any,
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> Any:
"""Recursively load objects from a JSON-serializable dictionary."""
registry_kwargs = RegistryKwargs(
decoder_registry=decoder_registry, class_decoder_registry=class_decoder_registry
)
_object_from_json = partial(object_from_json, **vars(registry_kwargs))
if type(object_json) in (str, int, float, bool, type(None)) or isinstance(
object_json, Enum
):
return object_json
elif isinstance(object_json, list):
return [_object_from_json(i) for i in object_json]
elif isinstance(object_json, tuple):
return tuple(_object_from_json(i) for i in object_json)
elif isinstance(object_json, dict):
if "__type" not in object_json:
# this is just a regular dictionary, e.g. the one in Parameter
# containing parameterizations
return {k: _object_from_json(v) for k, v in object_json.items()}
_type = object_json.pop("__type")
if _type == "datetime":
return datetime.datetime.strptime(
object_json["value"], "%Y-%m-%d %H:%M:%S.%f"
)
elif _type == "OrderedDict":
return OrderedDict(
[(k, _object_from_json(v)) for k, v in object_json["value"]]
)
elif _type == "DataFrame":
# Need dtype=False, otherwise infers arm_names like "4_1"
# should be int 41
return pd.read_json(StringIO(object_json["value"]), dtype=False)
elif _type == "ndarray":
return np.array(object_json["value"])
elif _type == "Tensor":
return tensor_from_json(json=object_json)
elif _type.startswith("torch"):
# Torch types will be encoded as "torch_<type_name>", so we drop prefix
return torch_type_from_str(
identifier=object_json["value"], type_name=_type[6:]
)
elif _type == "ListSurrogate":
return surrogate_from_list_surrogate_json(
list_surrogate_json=object_json, **vars(registry_kwargs)
)
elif _type == "set":
return set(object_json["value"])
# Used for decoding classes (not objects).
elif _type in class_decoder_registry:
return class_decoder_registry[_type](object_json)
elif _type not in decoder_registry:
err = (
f"The JSON dictionary passed to `object_from_json` has a type "
f"{_type} that is not registered with a corresponding class in "
f"DECODER_REGISTRY. {STORAGE_DOCS_SUFFIX}"
)
raise JSONDecodeError(err)
# pyre-fixme[9, 24]: Generic type `type` expects 1 type parameter, use
# `typing.Type[<base type>]` to avoid runtime subscripting errors.
_class: type = decoder_registry[_type]
if isclass(_class) and issubclass(_class, Enum):
name = object_json["name"]
if issubclass(_class, ModelRegistryBase):
name = _update_deprecated_model_registry(name=name)
# to access enum members by name, use item access
return _class[name]
elif isclass(_class) and issubclass(_class, torch.nn.Module):
return botorch_component_from_json(botorch_class=_class, json=object_json)
elif _class == GeneratorRun:
return generator_run_from_json(
object_json=object_json, **vars(registry_kwargs)
)
elif _class == GenerationStep:
return generation_step_from_json(
generation_step_json=object_json, **vars(registry_kwargs)
)
elif _class == GenerationNode:
return generation_node_from_json(
generation_node_json=object_json, **vars(registry_kwargs)
)
elif _class == GeneratorSpec:
return model_spec_from_json(
model_spec_json=object_json, **vars(registry_kwargs)
)
elif _class == GenerationStrategy:
return generation_strategy_from_json(
generation_strategy_json=object_json, **vars(registry_kwargs)
)
elif _class == MultiTypeExperiment:
return multi_type_experiment_from_json(
object_json=object_json, **vars(registry_kwargs)
)
elif _class == Experiment:
return experiment_from_json(
object_json=object_json, **vars(registry_kwargs)
)
elif _class == SearchSpace:
return search_space_from_json(
search_space_json=object_json, **vars(registry_kwargs)
)
elif _class == Objective:
return objective_from_json(object_json=object_json, **vars(registry_kwargs))
elif _class in (SurrogateSpec, Surrogate, ModelConfig):
if "input_transform" in object_json:
(
input_transform_classes_json,
input_transform_options_json,
) = get_input_transform_json_components(
input_transforms_json=object_json.pop("input_transform"),
**vars(registry_kwargs),
)
object_json["input_transform_classes"] = input_transform_classes_json
object_json["input_transform_options"] = input_transform_options_json
if "outcome_transform" in object_json:
(
outcome_transform_classes_json,
outcome_transform_options_json,
) = get_outcome_transform_json_components(
outcome_transforms_json=object_json.pop("outcome_transform"),
**vars(registry_kwargs),
)
object_json["outcome_transform_classes"] = (
outcome_transform_classes_json
)
object_json["outcome_transform_options"] = (
outcome_transform_options_json
)
elif isclass(_class) and (
issubclass(_class, TrialBasedCriterion)
or issubclass(_class, AuxiliaryExperimentCheck)
):
# TrialBasedCriterion contains a list of `TrialStatus` for args.
# AuxiliaryExperimentCheck contains AuxiliaryExperimentPurpose objects
# They need to be unpacked by hand to properly retain the types.
return unpack_transition_criteria_from_json(
class_=_class,
transition_criteria_json=object_json,
**vars(registry_kwargs),
)
elif isclass(_class) and issubclass(_class, SerializationMixin):
return _class(
# Note: we do not recursively call object_from_json here again as
# that would invalidate design principles behind deserialize_init_args.
# Any Ax class that needs serialization and who's init args include
# another Ax class that needs serialization should implement its own
# _to_json and _from_json methods and register them appropriately.
**_class.deserialize_init_args(
args=object_json, **vars(registry_kwargs)
)
)
if _class is SurrogateSpec:
# This is done here rather than with other _type checks above, since
# we want to have the input & outcome transform arguments updated
# before we call surrogate_spec_from_json.
return surrogate_spec_from_json(
surrogate_spec_json=object_json, **vars(registry_kwargs)
)
return ax_class_from_json_dict(
_class=_class, object_json=object_json, **vars(registry_kwargs)
)
else:
err = (
f"The object {object_json} passed to `object_from_json` has an "
f"unsupported type: {type(object_json)}."
)
raise JSONDecodeError(err)
# pyre-fixme[3]: Return annotation cannot be `Any`.
def ax_class_from_json_dict(
# pyre-fixme[24]: Generic type `type` expects 1 type parameter, use
# `typing.Type` to avoid runtime subscripting errors.
_class: type,
object_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> Any:
"""Reinstantiates an Ax class registered in `DECODER_REGISTRY` from a JSON
dict.
"""
return _class(
**{
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in object_json.items()
}
)
def generator_run_from_json(
object_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> GeneratorRun:
"""Load Ax GeneratorRun from JSON."""
time_created_json = object_json.pop("time_created")
type_json = object_json.pop("generator_run_type")
index_json = object_json.pop("index")
generator_run = GeneratorRun(
**{
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in object_json.items()
}
)
# Remove deprecated kwargs from model kwargs & bridge kwargs.
if generator_run._model_kwargs is not None:
generator_run._model_kwargs = {
k: v
for k, v in generator_run._model_kwargs.items()
if k not in _DEPRECATED_MODEL_KWARGS
}
if generator_run._bridge_kwargs is not None:
generator_run._bridge_kwargs = {
k: v
for k, v in generator_run._bridge_kwargs.items()
if k not in _DEPRECATED_MODEL_KWARGS
}
generator_run._time_created = object_from_json(
time_created_json,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
generator_run._generator_run_type = object_from_json(
type_json,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
generator_run._index = object_from_json(
index_json,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
return generator_run
def unpack_transition_criteria_from_json(
# pyre-fixme[24]: Generic type `type` expects 1 type parameter, use `typing.Type` to
# avoid runtime subscripting errors.
class_: type,
transition_criteria_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> TransitionCriterion | None:
"""Load Ax transition criteria that depend on Trials from JSON.
Since ``TrialBasedCriterion`` contain lists of ``TrialStatus``,
the json for these criterion needs to be carefully unpacked and
re-processed via ``object_from_json`` in order to maintain correct
typing. We pass in ``class_`` in order to correctly handle all classes
which inherit from ``TrialBasedCriterion`` (ex: ``MaxTrials``).
"""
new_dict = {}
for key, value in transition_criteria_json.items():
new_val = object_from_json(
object_json=value,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
new_dict[key] = new_val
return class_(**new_dict)
def search_space_from_json(
search_space_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> SearchSpace:
"""Load a SearchSpace from JSON.
This function is necessary due to the coupled loading of SearchSpace
and parameter constraints.
"""
parameters = object_from_json(
search_space_json.pop("parameters"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
json_param_constraints = search_space_json.pop("parameter_constraints")
return SearchSpace(
parameters=parameters,
parameter_constraints=parameter_constraints_from_json(
parameter_constraint_json=json_param_constraints,
parameters=parameters,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
)
def parameter_constraints_from_json(
parameter_constraint_json: list[dict[str, Any]],
parameters: list[Parameter],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> list[ParameterConstraint]:
"""Load ParameterConstraints from JSON.
Order and SumConstraint are tied to a search space,
and require that SearchSpace's parameters to be passed in for decoding.
Args:
parameter_constraint_json: JSON representation of parameter constraints.
parameters: Parameter definitions for decoding via parameter names.
Returns:
parameter_constraints: Python classes for parameter constraints.
"""
parameter_constraints = []
parameter_map = {p.name: p for p in parameters}
for constraint in parameter_constraint_json:
if constraint["__type"] == "OrderConstraint":
lower_parameter = parameter_map[constraint["lower_name"]]
upper_parameter = parameter_map[constraint["upper_name"]]
parameter_constraints.append(
OrderConstraint(
lower_parameter=lower_parameter, upper_parameter=upper_parameter
)
)
elif constraint["__type"] == "SumConstraint":
parameters = [parameter_map[name] for name in constraint["parameter_names"]]
parameter_constraints.append(
SumConstraint(
parameters=parameters,
is_upper_bound=constraint["is_upper_bound"],
bound=constraint["bound"],
)
)
else:
parameter_constraints.append(
object_from_json(
constraint,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
)
return parameter_constraints
def trials_from_json(
experiment: Experiment,
trials_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> dict[int, BaseTrial]:
"""Load Ax Trials from JSON."""
loaded_trials = {}
for index, batch_json in trials_json.items():
is_trial = batch_json["__type"] == "Trial"
batch_json = {
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in batch_json.items()
if k != "__type"
}
loaded_trials[int(index)] = (
trial_from_json(experiment=experiment, **batch_json)
if is_trial
else batch_trial_from_json(experiment=experiment, **batch_json)
)
return loaded_trials
def data_from_json(
data_by_trial_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> dict[int, "OrderedDict[int, Data]"]:
"""Load Ax Data from JSON."""
data_by_trial = object_from_json(
data_by_trial_json,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
# hack necessary because Python's json module converts dictionary
# keys to strings: https://stackoverflow.com/q/1450957
return {
int(k): OrderedDict({int(k2): v2 for k2, v2 in v.items()})
for k, v in data_by_trial.items()
}
def multi_type_experiment_from_json(
object_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> MultiTypeExperiment:
"""Load AE MultiTypeExperiment from JSON."""
experiment_info = _get_experiment_info(object_json)
_metric_to_canonical_name = object_json.pop("_metric_to_canonical_name")
_metric_to_trial_type = object_json.pop("_metric_to_trial_type")
_trial_type_to_runner = object_from_json(
object_json.pop("_trial_type_to_runner"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
tracking_metrics = object_from_json(
object_json.pop("tracking_metrics"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
# not relevant to multi type experiment
del object_json["runner"]
kwargs = {
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in object_json.items()
}
kwargs["default_runner"] = _trial_type_to_runner[object_json["default_trial_type"]]
experiment = MultiTypeExperiment(**kwargs)
for metric in tracking_metrics:
experiment._tracking_metrics[metric.name] = metric
experiment._metric_to_canonical_name = _metric_to_canonical_name
experiment._metric_to_trial_type = _metric_to_trial_type
experiment._trial_type_to_runner = _trial_type_to_runner
_load_experiment_info(
exp=experiment,
exp_info=experiment_info,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
return experiment
def experiment_from_json(
object_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> Experiment:
"""Load Ax Experiment from JSON."""
experiment_info = _get_experiment_info(object_json)
experiment = Experiment(
**{
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in object_json.items()
}
)
experiment._arms_by_name = {}
_load_experiment_info(
exp=experiment,
exp_info=experiment_info,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
return experiment
def _get_experiment_info(object_json: dict[str, Any]) -> dict[str, Any]:
"""Returns basic information from `Experiment` object_json."""
return {
"time_created_json": object_json.pop("time_created"),
"trials_json": object_json.pop("trials"),
"experiment_type_json": object_json.pop("experiment_type"),
"data_by_trial_json": object_json.pop("data_by_trial"),
}
def _load_experiment_info(
exp: Experiment,
exp_info: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> None:
"""Loads `Experiment` object with basic information."""
exp._time_created = object_from_json(
exp_info.get("time_created_json"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
exp._trials = trials_from_json(
exp,
exp_info.get("trials_json"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
exp._experiment_type = object_from_json(
exp_info.get("experiment_type_json"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
exp._data_by_trial = data_from_json(
exp_info.get("data_by_trial_json"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for trial in exp._trials.values():
for arm in trial.arms:
exp._register_arm(arm)
if trial.ttl_seconds is not None:
exp._trials_have_ttl = True
if exp.status_quo is not None:
sq = none_throws(exp.status_quo)
exp._register_arm(sq)
def _convert_generation_step_keys_for_backwards_compatibility(
object_json: dict[str, Any],
) -> dict[str, Any]:
"""If necessary, converts keys in a JSON dict representing a `GenerationStep`
for backwards compatibility.
"""
# NOTE: this is a hack to make generation steps able to load after the
# renaming of generation step fields to be in terms of 'trials' rather than
# 'arms'.
keys = list(object_json.keys())
for k in keys:
if "arms" in k:
object_json[k.replace("arms", "trials")] = object_json.pop(k)
if k == "recommended_max_parallelism":
object_json["max_parallelism"] = object_json.pop(k)
return object_json
def generation_node_from_json(
generation_node_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> GenerationNode:
"""Load GenerationNode object from JSON."""
# Due to input_constructors being a dictionary with both keys and values being of
# type enum, we must manually decode them here because object_from_json doesn't
# recursively decode dictionary key values.
decoded_input_constructors = None
if "input_constructors" in generation_node_json.keys():
decoded_input_constructors = {
InputConstructorPurpose[key]: object_from_json(
value,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for key, value in generation_node_json.pop("input_constructors").items()
}
return GenerationNode(
node_name=generation_node_json.pop("node_name"),
model_specs=object_from_json(
generation_node_json.pop("model_specs"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
best_model_selector=object_from_json(
generation_node_json.pop("best_model_selector", None),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
should_deduplicate=generation_node_json.pop("should_deduplicate", False),
transition_criteria=(
object_from_json(
generation_node_json.pop("transition_criteria"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if "transition_criteria" in generation_node_json.keys()
else None
),
input_constructors=decoded_input_constructors,
previous_node_name=(
generation_node_json.pop("previous_node_name")
if "previous_node_name" in generation_node_json.keys()
else None
),
trial_type=(
object_from_json(
generation_node_json.pop("trial_type"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if "trial_type" in generation_node_json.keys()
else None
),
)
def _extract_surrogate_spec_from_surrogate_specs(
model_kwargs: dict[str, Any],
) -> dict[str, Any]:
"""If `model_kwargs` includes a `surrogate_specs` key that is a dict
with a single element, this method replaces it with `surrogate_spec`
key with the value of that element.
This helper will keep deserialization of MBM models backwards compatible
even after we remove the ``surrogate_specs`` argument from ``BoTorchGenerator``.
Args:
model_kwargs: A dictionary of model kwargs to update.
Returns:
If ``surrogate_specs`` is not found or it is found but has multiple elements,
returns ``model_kwargs`` unchanged.
Otherwise, returns a new dictionary with the ``surrogate_specs`` element
replaced with ``surrogate_spec``.
"""
if (specs := model_kwargs.get("surrogate_specs", None)) is None or len(specs) > 1:
return model_kwargs
new_kwargs = model_kwargs.copy()
new_kwargs.pop("surrogate_specs")
new_kwargs["surrogate_spec"] = next(iter(specs.values()))
return new_kwargs
def generation_step_from_json(
generation_step_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> GenerationStep:
"""Load generation step from JSON."""
generation_step_json = _convert_generation_step_keys_for_backwards_compatibility(
generation_step_json
)
kwargs = generation_step_json.pop("model_kwargs", None)
for k in _DEPRECATED_MODEL_KWARGS:
# Remove deprecated kwargs.
kwargs.pop(k, None)
if kwargs is not None:
kwargs = _extract_surrogate_spec_from_surrogate_specs(kwargs)
gen_kwargs = generation_step_json.pop("model_gen_kwargs", None)
completion_criteria = (
object_from_json(
generation_step_json.pop("completion_criteria"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if "completion_criteria" in generation_step_json.keys()
else []
)
generation_step = GenerationStep(
model=object_from_json(
generation_step_json.pop("model"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
num_trials=generation_step_json.pop("num_trials"),
min_trials_observed=generation_step_json.pop("min_trials_observed", 0),
completion_criteria=(
completion_criteria if completion_criteria is not None else []
),
max_parallelism=(generation_step_json.pop("max_parallelism", None)),
enforce_num_trials=generation_step_json.pop("enforce_num_trials", True),
model_kwargs=(
_decode_callables_from_references(
object_from_json(
kwargs,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
)
if kwargs
else {}
),
model_gen_kwargs=(
_decode_callables_from_references(
object_from_json(
gen_kwargs,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
)
if gen_kwargs
else {}
),
index=generation_step_json.pop("index", -1),
should_deduplicate=generation_step_json.pop("should_deduplicate", False),
)
return generation_step
def model_spec_from_json(
model_spec_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> GeneratorSpec:
"""Load GeneratorSpec from JSON."""
kwargs = model_spec_json.pop("model_kwargs", None)
for k in _DEPRECATED_MODEL_KWARGS:
# Remove deprecated model kwargs.
kwargs.pop(k, None)
if kwargs is not None:
kwargs = _extract_surrogate_spec_from_surrogate_specs(kwargs)
gen_kwargs = model_spec_json.pop("model_gen_kwargs", None)
return GeneratorSpec(
model_enum=object_from_json(
model_spec_json.pop("model_enum"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
model_kwargs=(
_decode_callables_from_references(
object_from_json(
kwargs,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
)
if kwargs
else {}
),
model_gen_kwargs=(
_decode_callables_from_references(
object_from_json(
gen_kwargs,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
)
if gen_kwargs
else {}
),
)
def generation_strategy_from_json(
generation_strategy_json: dict[str, Any],
experiment: Experiment | None = None,
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> GenerationStrategy:
"""Load generation strategy from JSON."""
nodes = (
object_from_json(
generation_strategy_json.pop("nodes"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if "nodes" in generation_strategy_json
else []
)
steps = object_from_json(
generation_strategy_json.pop("steps"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if len(steps) > 0:
gs = GenerationStrategy(steps=steps, name=generation_strategy_json.pop("name"))
gs._curr = gs._steps[generation_strategy_json.pop("curr_index")]
else:
gs = GenerationStrategy(nodes=nodes, name=generation_strategy_json.pop("name"))
curr_node_name = generation_strategy_json.pop("curr_node_name")
for node in gs._nodes:
if node.node_name == curr_node_name:
gs._curr = node
break
gs._db_id = object_from_json(
generation_strategy_json.pop("db_id"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
gs._experiment = experiment or object_from_json(
generation_strategy_json.pop("experiment"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
gs._generator_runs = object_from_json(
generation_strategy_json.pop("generator_runs"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
return gs
def surrogate_spec_from_json(
surrogate_spec_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> SurrogateSpec:
"""Construct a surrogate spec from JSON arguments.
If both deprecated args and `model_configs` are found, the deprecated args are
discarded to prevent errors during loading. These would've been made into a
``ModelConfig`` while constructing the ``SurrogateSpec``. This is necessary
to ensure backwards compatibility with ``SurrogateSpec``s that had both attributes.
"""
if "model_configs" in surrogate_spec_json:
for deprecated_arg in [
"botorch_model_class",
"botorch_model_kwargs",
"mll_class",
"mll_kwargs",
"input_transform_classes",
"input_transform_options",
"outcome_transform_classes",
"outcome_transform_options",
"covar_module_class",
"covar_module_kwargs",
"likelihood_class",
"likelihood_kwargs",
]:
surrogate_spec_json.pop(deprecated_arg, None)
return SurrogateSpec(
**{
k: object_from_json(
v,
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
for k, v in surrogate_spec_json.items()
}
)
def surrogate_from_list_surrogate_json(
list_surrogate_json: dict[str, Any],
decoder_registry: TDecoderRegistry = CORE_DECODER_REGISTRY,
class_decoder_registry: TClassDecoderRegistry = CORE_CLASS_DECODER_REGISTRY,
) -> Surrogate:
logger.warning(
"`ListSurrogate` has been deprecated. Reconstructing a `Surrogate` "
"with as similar properties as possible."
)
if "submodel_input_transforms" in list_surrogate_json:
(
list_surrogate_json["submodel_input_transform_classes"],
list_surrogate_json["submodel_input_transform_options"],
) = get_input_transform_json_components(
list_surrogate_json.pop("submodel_input_transforms"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
if "submodel_outcome_transforms" in list_surrogate_json:
(
list_surrogate_json["submodel_outcome_transform_classes"],
list_surrogate_json["submodel_outcome_transform_options"],
) = get_outcome_transform_json_components(
list_surrogate_json.pop("submodel_outcome_transforms"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
)
return Surrogate(
botorch_model_class=object_from_json(
object_json=list_surrogate_json.get("botorch_submodel_class"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
model_options=list_surrogate_json.get("submodel_options"),
mll_class=object_from_json(
object_json=list_surrogate_json.get("mll_class"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
mll_options=list_surrogate_json.get("mll_options"),
input_transform_classes=object_from_json(
object_json=list_surrogate_json.get("submodel_input_transform_classes"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
input_transform_options=object_from_json(
object_json=list_surrogate_json.get("submodel_input_transform_options"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
outcome_transform_classes=object_from_json(
object_json=list_surrogate_json.get("submodel_outcome_transform_classes"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),
outcome_transform_options=object_from_json(
object_json=list_surrogate_json.get("submodel_outcome_transform_options"),
decoder_registry=decoder_registry,
class_decoder_registry=class_decoder_registry,
),