forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeraytracing.cpp
635 lines (550 loc) · 29.7 KB
/
computeraytracing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*
* Vulkan Example - Compute shader based ray tracing
*
* This samples implements a basic ray tracer with materials and reflections using a compute shader
* Shader storage buffers are used to pass geometry information for spheres and planes to the computer shader
* The compute shader then uses these as the scene geometry for ray tracing and outputs the results to a storage image
* The graphics part of the sample then displays that image full screen
* Not to be confused with actual hardware accelerated ray tracing
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
class VulkanExample : public VulkanExampleBase
{
public:
// The compute shader will store the ray traced output to a storage image
vks::Texture storageImage{};
// Resources for the graphics part of the example. The graphics pipeline simply displays the compute shader output
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
} graphics;
// Resources for the compute part of the example
struct Compute {
// Object properties for planes and spheres are passed via a shade storage buffer
// There is no vertex data, the compute shader calculates the primitives on the fly
vks::Buffer objectStorageBuffer;
vks::Buffer uniformBuffer; // Uniform buffer object containing scene parameters
VkQueue queue{ VK_NULL_HANDLE }; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool{ VK_NULL_HANDLE }; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer{ VK_NULL_HANDLE }; // Command buffer storing the dispatch commands and barriers
VkFence fence{ VK_NULL_HANDLE }; // Synchronization fence to avoid rewriting compute CB if still in use
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Compute shader binding layout
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; // Compute shader bindings
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; // Layout of the compute pipeline
VkPipeline pipeline{ VK_NULL_HANDLE }; // Compute raytracing pipeline
struct UniformDataCompute { // Compute shader uniform block object
glm::vec3 lightPos;
float aspectRatio{ 1.0f };
glm::vec4 fogColor = glm::vec4(0.0f);
struct {
glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
float fov = 10.0f;
} camera;
glm::mat4 _pad;
} uniformData;
} compute;
// Definitions for scene objects
// The sample uses spheres and planes that are passed to the compute shader via a shader storage buffer
// The computer shader uses the object type to select different calculations
enum class SceneObjectType { Sphere = 0, Plane = 1 };
// Spheres and planes are described by different properties, we use a union for this
union SceneObjectProperty {
glm::vec4 positionAndRadius;
glm::vec4 normalAndDistance;
};
struct SceneObject {
SceneObjectProperty objectProperties;
glm::vec3 diffuse;
float specular{ 1.0f };
uint32_t id{ 0 };
uint32_t objectType{ 0 };
// Due to alignment rules we need to pad to make the element align at 16-bytes
glm::ivec2 _pad;
};
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader ray tracing";
timerSpeed *= 0.25f;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -4.0f));
camera.rotationSpeed = 0.0f;
camera.movementSpeed = 2.5f;
#if (defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT))
// SRS - on macOS set environment variable to ensure MoltenVK disables Metal argument buffers for this example
setenv("MVK_CONFIG_USE_METAL_ARGUMENT_BUFFERS", "0", 1);
#endif
}
~VulkanExample()
{
if (device) {
// Graphics
vkDestroyPipeline(device, graphics.pipeline, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
// Compute
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
compute.uniformBuffer.destroy();
compute.objectStorageBuffer.destroy();
storageImage.destroy();
}
}
// Prepare a storage image that is used to store the compute shader ray tracing output
void prepareStorageImage()
{
#if defined(__ANDROID__)
// Use a smaller image on Android for performance reasons
const uint32_t textureSize = 1024;
#else
const uint32_t textureSize = 2048;
#endif
const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations required for storing pixel from the compute shader
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Prepare blit target texture
storageImage.width = textureSize;
storageImage.height = textureSize;
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { textureSize, textureSize, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Image will be sampled in the fragment shader and used as storage target in the compute shader
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &storageImage.image));
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &storageImage.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.deviceMemory, 0));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
storageImage.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
vks::tools::setImageLayout(layoutCmd, storageImage.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, storageImage.imageLayout);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
layoutCmd,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &storageImage.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = storageImage.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &storageImage.view));
// Initialize a descriptor for later use
storageImage.descriptor.imageLayout = storageImage.imageLayout;
storageImage.descriptor.imageView = storageImage.view;
storageImage.descriptor.sampler = storageImage.sampler;
storageImage.device = vulkanDevice;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Image memory barrier to make sure that compute shader writes are finished before sampling from the texture
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Acquire barrier for graphics queue
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
else
{
// Combined barrier on single queue family
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Display ray traced image generated by compute shader as a full screen quad
// Quad vertices are generated in the vertex shader
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Release barrier from graphics queue
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Acquire barrier for compute queue
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
vkCmdDispatch(compute.commandBuffer, storageImage.width / 16, storageImage.height / 16, 1);
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Release barrier from compute queue
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkEndCommandBuffer(compute.commandBuffer);
}
// Setup and fill the compute shader storage buffes containing object definitions for the raytraced scene
void prepareStorageBuffers()
{
// Id used to identify objects by the ray tracing shader
uint32_t currentId = 0;
std::vector<SceneObject> sceneObjects{};
// Add some spheres to the scene
//std::vector<Sphere> spheres;
// Lambda to simplify object creation
auto addSphere = [&sceneObjects, ¤tId](glm::vec3 pos, float radius, glm::vec3 diffuse, float specular) {
SceneObject sphere{};
sphere.id = currentId++;
sphere.objectProperties.positionAndRadius = glm::vec4(pos, radius);
sphere.diffuse = diffuse;
sphere.specular = specular;
sphere.objectType = (uint32_t)SceneObjectType::Sphere;
sceneObjects.push_back(sphere);
};
auto addPlane = [&sceneObjects, ¤tId](glm::vec3 normal, float distance, glm::vec3 diffuse, float specular) {
SceneObject plane{};
plane.id = currentId++;
plane.objectProperties.normalAndDistance = glm::vec4(normal, distance);
plane.diffuse = diffuse;
plane.specular = specular;
plane.objectType = (uint32_t)SceneObjectType::Plane;
sceneObjects.push_back(plane);
};
addSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
addSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f);
addSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f);
const float roomDim = 4.0f;
addPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f);
addPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f);
addPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
VkDeviceSize storageBufferSize = sceneObjects.size() * sizeof(SceneObject);
// Copy the data to the device
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, sceneObjects.data());
vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.objectStorageBuffer, storageBufferSize);
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = { 0, 0, storageBufferSize};
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.objectStorageBuffer.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
// The descriptor pool will be shared between graphics and compute
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
// Prepare the graphics resources used to display the ray traced output of the compute shader
void prepareGraphics()
{
// Setup descriptors
// The graphics pipeline uses one set and one binding
// Binding 0: Storage image with raytraced output as a sampled image for displaying it
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &storageImage.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computeraytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computeraytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
}
// Prepare the compute resources that generates the ray traced image
void prepareCompute()
{
// Create a compute capable device queue
// The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute
// Depending on the implementation this may result in different queue family indices for graphics and computes,
// requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer)
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.pNext = NULL;
queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Setup descriptors
// The compute pipeline uses one set and four bindings
// Binding 0: Storage image for raytraced output
// Binding 1: Uniform buffer with parameters
// Binding 2: Shader storage buffer with scene object definitions
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &storageImage.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2, &compute.objectStorageBuffer.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
// Create the compute shader pipeline
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeraytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different from the graphics one
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
// Fence for compute CB sync
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
void prepareUniformBuffers()
{
// Compute shader parameter uniform buffer block
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformDataCompute));
}
void updateUniformBuffers()
{
compute.uniformData.aspectRatio = (float)width / (float)height;
compute.uniformData.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.camera.pos = camera.position * -1.0f;
VK_CHECK_RESULT(compute.uniformBuffer.map());
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformDataCompute));
compute.uniformBuffer.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
prepareStorageImage();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorPool();
prepareGraphics();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
void draw()
{
// Submit compute commands
// Use a fence to ensure that compute command buffer has finished executing before using it again
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &compute.fence);
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence));
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
};
VULKAN_EXAMPLE_MAIN()