-
Notifications
You must be signed in to change notification settings - Fork 4
/
llm_azure.py
144 lines (125 loc) · 5.03 KB
/
llm_azure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from typing import Iterable, Iterator, List, Union
import llm
import yaml
from llm import EmbeddingModel, hookimpl
from llm.default_plugins.openai_models import Chat, combine_chunks
from llm.utils import remove_dict_none_values
from openai import AzureOpenAI
@hookimpl
def register_models(register):
azure_path = config_dir() / "config.yaml"
with open(azure_path) as f:
azure_models = yaml.safe_load(f)
for model in azure_models:
if not model.get('embedding_model'):
model_id = model["model_id"]
model_name = model["deployment_name"]
can_stream = model.get("can_stream", True)
endpoint = model["endpoint"]
api_version = model["api_version"]
aliases = model.get("aliases", [])
register(AzureChat(model_id, model_name, can_stream, endpoint, api_version), aliases=aliases)
@hookimpl
def register_embedding_models(register):
azure_path = config_dir() / "config.yaml"
with open(azure_path) as f:
azure_models = yaml.safe_load(f)
for model in azure_models:
if model.get('embedding_model'):
model_id = model["model_id"]
model_name = model["deployment_name"]
endpoint = model["endpoint"]
api_version = model["api_version"]
aliases = model.get("aliases", [])
register(AzureEmbedding(model_id, model_name, endpoint, api_version), aliases=aliases)
class AzureEmbedding(EmbeddingModel):
needs_key = "azure"
key_env_var = "AZURE_OPENAI_API_KEY"
batch_size = 100
def __init__(self, model_id, model_name, endpoint, api_version):
self.model_id = model_id
self.model_name = model_name
self.endpoint = endpoint
self.api_version = api_version
def embed_batch(self, items: Iterable[Union[str, bytes]]) -> Iterator[List[float]]:
kwargs = {
"input": items,
"model": self.model_name,
}
client = _get_client(self)
results = client.embeddings.create(**kwargs).data
return ([float(r) for r in result.embedding] for result in results)
class AzureChat(Chat):
needs_key = "azure"
key_env_var = "AZURE_OPENAI_API_KEY"
def __init__(self, model_id, model_name, can_stream, endpoint, api_version):
self.model_id = model_id
self.model_name = model_name
self.can_stream = can_stream
self.endpoint = endpoint
self.api_version = api_version
def get_client(self):
return _get_client(self)
def __str__(self):
return "AzureOpenAI Chat: {}".format(self.model_id)
def execute(self, prompt, stream, response, conversation=None):
messages = []
current_system = None
if conversation is not None:
for prev_response in conversation.responses:
if (
prev_response.prompt.system
and prev_response.prompt.system != current_system
):
messages.append(
{"role": "system", "content": prev_response.prompt.system},
)
current_system = prev_response.prompt.system
messages.append(
{"role": "user", "content": prev_response.prompt.prompt},
)
messages.append({"role": "assistant", "content": prev_response.text()})
if prompt.system and prompt.system != current_system:
messages.append({"role": "system", "content": prompt.system})
messages.append({"role": "user", "content": prompt.prompt})
response._prompt_json = {"messages": messages}
kwargs = self.build_kwargs(prompt, stream)
client = self.get_client()
if stream:
completion = client.chat.completions.create(
model=self.model_name or self.model_id,
messages=messages,
stream=True,
**kwargs,
)
chunks = []
for chunk in completion:
chunks.append(chunk)
if chunk.choices:
try:
content = chunk.choices[0].delta.content
except IndexError:
content = None
if content is not None:
yield content
response.response_json = remove_dict_none_values(combine_chunks(chunks))
else:
completion = client.chat.completions.create(
model=self.model_name or self.model_id,
messages=messages,
stream=False,
**kwargs,
)
response.response_json = remove_dict_none_values(completion.dict())
yield completion.choices[0].message.content
def config_dir():
dir_path = llm.user_dir() / "azure"
if not dir_path.exists():
dir_path.mkdir()
return dir_path
def _get_client(self):
return AzureOpenAI(
api_key=self.key,
api_version=self.api_version,
azure_endpoint=self.endpoint,
)