-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathml_dtm.py
executable file
·258 lines (239 loc) · 9.47 KB
/
ml_dtm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
from time import time
from scipy.stats import entropy
from threading import Thread
import random
class ML_DTM(object):
def __init__(self, documents, dictionary, alpha=1.0, beta=0.5, psi=1.0, sigma=1.0, n_topics=10, n_iter=1000):
print("- initializing parameters -")
self.n_iterations = n_iter
self.languages = list(documents.keys())
self.K = n_topics
self.beta = beta
self.psi = psi
self.sigma = sigma
self.timeslices = [len(documents[self.languages[0]][i]) for i in range(len(documents[self.languages[0]]))]
self.T = len(self.timeslices)
self.D = np.sum(self.timeslices)
self.V = {lang: len(dictionary[lang]) for lang in self.languages}
self.N = {lang: np.array([[len(doc) for doc in documents[lang][t]] for t in range(self.T)]) for lang in self.languages}
self.alpha = np.array([[alpha for k in range(self.K)] for t in range(self.T)])
self.word_id = {lang: {dictionary[lang][i]: i for i in range(len(dictionary[lang]))} for lang in self.languages}
self.word_token = {lang: dictionary[lang] for lang in self.languages}
self.z = {lang: [] for lang in self.languages}
self.w = {lang: [] for lang in self.languages}
for t in range(self.T):
n_dt = self.timeslices[t]
for lang in self.languages:
self.z[lang].append([[random.randrange(0, self.K) for word in range(self.N[lang][t][d])] for d in range(n_dt)])
self.w[lang].append([[self.word_id[lang][documents[lang][t][d][word]] for word in range(self.N[lang][t][d])] for d in range(n_dt)])
# do the counting and compute theta and phi based on the counts
m, n, n_sum = self.calculate_counts()
self.counts = {}
self.counts['m'] = m
self.counts['n'] = n
self.counts['n_sum'] = n_sum
theta, phi = self.compute_theta_phi()
self.theta = theta
self.phi = phi
for lang in self.languages:
print("Vocabulary size -", lang, ":", str(self.V[lang]))
print("Topics: ", par['K'])
print("beta: ", par['beta'])
print("timeslices:", par['timeslices'])
def compute_jsd(self,p, q):
p = np.asarray(p)
q = np.asarray(q)
p /= p.sum()
q /= q.sum()
m = (p + q) / 2
return (entropy(p, m) + entropy(q, m)) / 2
def evaluate_divergence(self):
topic_div = {lang: [[0.0 for _ in range(self.K-1)] for _ in range(self.T)] for lang in self.languages}
time_div = {lang: [[0.0 for _ in range(self.T-1)] for _ in range(self.K)] for lang in self.languages}
for t in range(self.T):
for k in range(self.K-1):
for lang in self.languages:
topic1 = softmax(self.phi[lang][t][k])
topic2 = softmax(self.phi[lang][t][k+1])
jsd = self.compute_jsd(topic1, topic2)
topic_div[lang][t][k] = jsd
for k in range(self.K):
for t in range(self.T-1):
for lang in self.languages:
topic1 = softmax(self.phi[lang][t][k])
topic2 = softmax(self.phi[lang][t+1][k])
jsd = self.compute_jsd(topic1, topic2)
time_div[lang][k][t] = jsd
for lang in self.languages:
topic_mean = np.mean([np.mean(topic) for topic in topic_div[lang]])
time_mean = np.mean([np.mean(timet) for timet in time_div[lang]])
print("Topic JSD -", lang, ":", topic_mean)
print("Time JSD -", lang, ":", time_mean, "\n")
def calculate_counts(self):
m = {lang: [] for lang in self.languages}
n = {lang: [] for lang in self.languages}
n_sum = {lang: [] for lang in self.languages}
for t in range(self.T):
for lang in self.languages:
# get the counts for time slice t
m_t = np.array([[0.0 for topic in range(self.K)] for doc in range(self.timeslices[t])])
n_t = np.array([[0.0 for word in range(self.V[lang])] for topic in range(self.K)])
n_sum_t = np.array([0.0 for k in range(self.K)])
for d in range(self.timeslices[t]):
for w in range(self.N[lang][t][d]):
topic = self.z[lang][t][d][w]
word_id = self.w[lang][t][d][w]
m_t[d][topic] += 1.0
n_t[topic][word_id] += 1.0
n_sum_t[topic] += 1.0
m[lang].append(m_t)
n[lang].append(n_t)
n_sum[lang].append(n_sum_t)
return m, n, n_sum
def compute_theta_phi(self):
theta = []
phi = {lang: np.empty(shape=(self.T, self.K, self.V[lang]), dtype=float) for lang in self.languages}
for t in range(self.T):
theta_t = np.array([[0.0 for topic in range(self.K)] for doc in range(self.timeslices[t])])
for d in range(self.timeslices[t]):
for lang in self.languages:
theta_t[d] = np.add(theta_t[d], self.counts['m'][lang][t][d])
theta_t[d] = np.array([theta_t[d]/np.sum(theta_t[d])])
theta.append(theta_t)
for lang in self.languages:
phi_t = np.copy(self.counts['n'][lang][t])
for k in range(self.K):
if np.sum(phi_t[k]) == 0:
phi_t[k] = np.asarray([1.0/len(phi_t[k]) for _ in range(len(phi_t[k]))])
else:
phi_t[k] = 1.0*phi_t[k]/np.sum(phi_t[k])
phi[lang][t] = phi_t
return theta, phi
def compute_theta(self):
theta = []
for t in range(self.T):
theta_t = np.array([[0.0 for topic in range(self.K)] for doc in range(self.timeslices[t])])
for d in range(self.timeslices[t]):
for lang in self.languages:
theta_t[d] = np.add(theta_t[d], self.counts['m'][lang][t][d])
theta_t[d] = np.array([theta_t[d]/np.sum(theta_t[d])])
theta.append(theta_t)
return theta
def compute_phi(self):
phi = {lang: np.empty(shape=(self.T, self.K, self.V[lang]), dtype=float) for lang in self.languages}
for t in range(self.T):
for lang in self.languages:
phi_t = np.copy(self.counts['n'][lang][t])
for k in range(self.K):
if np.sum(phi_t[k]) == 0:
phi_t[k] = np.asarray([1.0/len(phi_t[k]) for _ in range(len(phi_t[k]))])
else:
phi_t[k] = 1.0*phi_t[k]/np.sum(phi_t[k])
phi[lang][t] = phi_t
return phi
def get_learning_rate(self, i):
lr = 0.5 * (90+i)**-0.70
return lr
def softmax(self, x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
def get_noise(self, lr):
return np.random.normal(0, lr)
def sample_z(self, ts, doc_index, word_id, lang):
theta = self.theta[ts][doc_index]
phi = self.phi[lang][ts]
topic_prob = [np.exp(theta[k]) * np.exp(phi[k][word_id]) for k in range(self.K)]
topic_prob = topic_prob/np.sum(topic_prob)
new_topic = list(np.random.multinomial(1, topic_prob, size=1)[0]).index(1)
return new_topic
def sample_phi(self, k, iteration):
lr = self.get_learning_rate(iteration)
noise = self.get_noise(lr)
for lang in self.languages:
phi = self.phi[lang]
for ts in range(self.T):
prob_phi = self.softmax(phi[ts][k])
for w in range(self.V[lang]):
if ts == 0:
left = phi[ts+1][k][w] - phi[ts][k][w]
elif ts == self.T-1:
left = phi[ts-1][k][w] - phi[ts][k][w]
else:
left = (phi[ts+1][k][w] + phi[ts-1][k][w]) - 2*phi[ts][k][w]
left /= self.beta**2
right = self.counts['n'][lang][ts][k][w] - (self.counts['n_sum'][lang][ts][k] * prob_phi[w])
gradient_w = left + right
delta_phi = (0.5*lr) * gradient_w + noise
phi[ts][k][w] += delta_phi
def sample_theta(self, ts, doc_index, iter):
theta = self.theta[ts][doc_index]
prob_theta = self.softmax(theta)
lr = self.get_learning_rate(iter)
noise = self.get_noise(lr)
alpha = self.alpha[ts]
for k in range(self.K):
left = -1/self.psi**2 * (theta[k] - alpha[k])
right = 0
for lang in self.languages:
n_dt = self.N[lang][ts][doc_index]
right += (self.counts['m'][lang][ts][doc_index][k] - (n_dt * prob_theta[k]))
gradient_theta = left + right
delta_theta = (0.5*lr) * gradient_theta + noise
theta[k] += delta_theta
def sample_alpha(self):
alpha = self.alpha
for ts in range(1, self.T):
if ts == 0:
alpha_mean = alpha[ts+1]
elif ts == self.T-1:
alpha_mean = alpha[ts-1]
else:
alpha_mean = (alpha[ts-1] + alpha[ts+1]) / 2
theta = self.theta[ts]
theta_mean = np.mean(theta, axis=0)
dt = self.timeslices[ts]
identity_mat = np.identity(self.K, dtype=float)
cov_hat = (2/self.sigma**2 + dt/self.psi**2) * identity_mat
cov_hat_inv = np.linalg.inv(cov_hat)
minus_term = ((2/self.sigma**2)*theta_mean + (dt/self.psi**2)*alpha_mean)
minus_term = cov_hat_inv * minus_term
mu_hat = (alpha_mean + theta_mean) - minus_term.diagonal()
alpha[ts] = np.random.multivariate_normal(mu_hat, cov_hat_inv)
def resample_topic(self, lang, ts, doc_id, word):
word_id = self.w[lang][ts][doc_id][word]
old_topic = self.z[lang][ts][doc_id][word]
self.counts['m'][lang][ts][doc_id][old_topic] -= 1
self.counts['n'][lang][ts][old_topic][word_id] -= 1
self.counts['n_sum'][lang][ts][old_topic] -= 1
new_topic = self.sample_z(ts, doc_id, word_id, lang)
self.z[lang][ts][doc_id][word] = new_topic
self.counts['m'][lang][ts][doc_id][new_topic] += 1
self.counts['n'][lang][ts][new_topic][word_id] += 1
self.counts['n_sum'][lang][ts][new_topic] += 1
def resample_doc(self, ts, iter):
print("resample docs in time slice", ts)
for doc_id in range(self.timeslices[ts]):
self.sample_theta(ts, doc_id, iter)
for lang in self.languages:
for w in range(self.N[lang][ts][doc_id]):
self.resample_topic(lang, ts, doc_id, w)
def gibbs_sampling(self):
time_start = time()
for it in range(self.n_iterations):
print("\n--- iteration", str(it+1), "of", self.n_iterations, "---")
self.sample_alpha()
thread_list = []
for k in range(self.K):
th = Thread(target=self.sample_phi, args=(k, iter, ))
th.start()
thread_list.append(th)
for th in thread_list:
th.join()
self.evaluate_divergence()
for ts in range(self.T):
self.resample_doc(ts, iter)
self.theta = self.compute_theta()
self.phi = self.compute_phi()
time_duration = (time() - time_start) / (60*60)
print("Done!")
print("*** Sampling took ", str(time_duration), " hours ***")