原作者github:https://github.com/titipata/scipdf_parser
声明
- 只做个人学习,并无商用,特别感谢作者的的代码
- 本项目基于:GROBID
- 首先git clone本项目
- 使用pip安装
requirements.txt
中的包 - 下载模型文件:
en_core_web_sm-2.2.5.tar.gz
,并使用pip安装 - 执行命令:
bash serve_grobid.sh
(默认端口:8070)
import scipdf
article_dict = scipdf.parse_pdf_to_dict('example_data/futoma2017improved.pdf') # return dictionary
# option to parse directly from URL to PDF, if as_list is set to True, output 'text' of parsed section will be in a list of paragraphs instead
article_dict = scipdf.parse_pdf_to_dict('https://www.biorxiv.org/content/biorxiv/early/2018/11/20/463760.full.pdf', as_list=False)
# output example
>> {
'title': 'Proceedings of Machine Learning for Healthcare',
'abstract': '...',
'sections': [
{'heading': '...', 'text': '...'},
{'heading': '...', 'text': '...'},
...
],
'references': [
{'title': '...', 'year': '...', 'journal': '...', 'author': '...'},
...
],
'figures': [
{'figure_label': '...', 'figure_type': '...', 'figure_id': '...', 'figure_caption': '...', 'figure_data': '...'},
...
],
'doi': '...'
}
xml = scipdf.parse_pdf('example_data/futoma2017improved.pdf', soup=True) # option to parse full XML from GROBID
To parse figures from PDF using pdffigures2, you can run
scipdf.parse_figures('example_data', output_folder='figures') # folder should contain only PDF files
You can see example output figures in figures
folder.