Skip to content
This repository was archived by the owner on Dec 18, 2019. It is now read-only.

Commit 6063d92

Browse files
author
rhall
committedSep 4, 2014
Start to fix script.
1 parent 5d1d6d6 commit 6063d92

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed
 

‎bin/demo.sh

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,6 @@
33
# - make monolithic conjecture jar.
44
sbt clean assembly
55
# - make the instances.
6-
java -cp target/conjecture-assembly-0.0.7-SNAPSHOT.jar com.twitter.scalding.Tool com.etsy.conjecture.demo.IrisDataToMulticlassLabeledInstances --input_file data/iris.tsv --output_file iris_model/instances --local
6+
java -cp target/conjecture-assembly-*.jar com.twitter.scalding.Tool com.etsy.conjecture.demo.IrisDataToMulticlassLabeledInstances --input_file data/iris.tsv --output_file iris_model/instances --local
77
# - construct the classifier.
8-
java -cp target/conjecture-assembly-0.0.7-SNAPSHOT.jar com.twitter.scalding.Tool com.etsy.conjecture.demo.LearnMulticlassClassifier --input iris_model/instances --output iris_model --class_names Iris-versicolor,Iris-virginica,Iris-setosa --iters 5 --folds 3 --local
8+
java -cp target/conjecture-assembly-*.jar com.twitter.scalding.Tool com.etsy.conjecture.demo.LearnMulticlassClassifier --input iris_model/instances --output iris_model --class_names Iris-versicolor,Iris-virginica,Iris-setosa --iters 5 --folds 3 --local

‎src/main/java/com/etsy/conjecture/model/SGDOptimizer.java

+2-2
Original file line numberDiff line numberDiff line change
@@ -146,15 +146,15 @@ public SGDOptimizer<L> setExponentialLearningRateBase(double base) {
146146

147147
public SGDOptimizer<L> setGaussianRegularizationWeight(double gaussian) {
148148
checkArgument(gaussian >= 0.0,
149-
"gaussian regularization weight must be positive, given: %f",
149+
"gaussian regularization weight must be non-negative, given: %f",
150150
gaussian);
151151
this.gaussian = gaussian;
152152
return this;
153153
}
154154

155155
public SGDOptimizer<L> setLaplaceRegularizationWeight(double laplace) {
156156
checkArgument(laplace >= 0.0,
157-
"laplace regularization weight must be positive, given: %f",
157+
"laplace regularization weight must be non-negative, given: %f",
158158
laplace);
159159
this.laplace = laplace;
160160
return this;

0 commit comments

Comments
 (0)