-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune.py
84 lines (71 loc) · 2.71 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import subprocess
import threading
import argparse
import shutil
import os
import tempfile
def create_tmp_train_dir(in_dir):
# Create a temporary directory
tmp_dir = tempfile.mkdtemp()
# Create subdirectories 'train' and 'val' inside the temporary directory
train_dir = os.path.join(tmp_dir, "train")
val_dir = os.path.join(tmp_dir, "val")
os.makedirs(train_dir)
os.makedirs(val_dir)
# Copy all files from in_dir to the 'train' subdirectory
for filename in os.listdir(in_dir):
src_file = os.path.join(in_dir, filename)
dst_file = os.path.join(train_dir, filename)
if os.path.isfile(src_file):
shutil.copy(src_file, dst_file)
return tmp_dir
def run_command_sd(in_dir, out_dir, orig_in_dir, num_processes=1):
resolution = 512
command = f"""accelerate launch --num_processes={num_processes} diffusers_repo/examples/text_to_image/train_text_to_image.py \
--pretrained_model_name_or_path="stabilityai/stable-diffusion-2-1" \
--dataset_name="{in_dir}" \
--use_ema \
--resolution={resolution} \
--center_crop \
--random_flip \
--train_batch_size=4 \
--max_train_steps=2000 \
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--learning_rate=5e-06 \
--max_grad_norm=1 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--output_dir="{out_dir}" \
--report_to="wandb" \
--validation_prompts "a astronaut riding a horse by nulevoy" "a candle next to a mirror by nulevoy" "a car by nulevoy" "a cheese phone by nulevoy" "a tree with a light shining on it by nulevoy" "a mountain landscape by nulevoy" "a village in a thunderstorm by nulevoy" \
--validation_epochs=50 \
--seed=123456 \
--token="nulevoy" \
--tracker_project_name="{orig_in_dir.replace("/", "_")}"
"""
subprocess.run(command, shell=True)
def process_directories(root, directories, method):
while directories:
# Start two threads if there are at least two directories left
threads = []
for i in args.gpu_ids:
if not directories:
break
dir = directories.pop()
print(f"Processing {dir}", flush=True)
cuda_device = i
thread = threading.Thread(target=method, args=(cuda_device, dir))
thread.start()
threads.append(thread)
# Wait for both threads to complete
for thread in threads:
thread.join()
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str)
parser.add_argument("--out_dir", type=str)
parser.add_argument("--num_processes", type=int, default=1)
args = parser.parse_args()
tmp_train_dir = create_tmp_train_dir(args.in_dir)
run_command_sd(tmp_train_dir, args.out_dir, args.in_dir, args.num_processes)
shutil.rmtree(tmp_train_dir)