-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposter_ss2023.tex
278 lines (209 loc) · 9.91 KB
/
poster_ss2023.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\documentclass[portrait,final,a0paper,fontscale=0.33]{baposter}
%% read in constants, custom functions and used packages
\input{functions/packages}
\begin{document}
\begin{poster}%
% Poster Options
{
% Show grid to help with alignment
grid=false,
% Number of columns and column spacing
columns=6,
colspacing=1em,
% Color style
bgColorOne=white,
borderColor=iftuccolor,
headerColorOne=iftucbackground,
headerFontColor=iftucfont,
boxColorOne=white,
% Format of textbox
textborder=rounded,
textfont=\small,
% Format of text header
eyecatcher=true,
headerborder=closed,
headerheight=0.1\textheight,
% textfont=\sc, An example of changing the text font
headershape=rounded,
headershade=plain,
headerfont=\Large\bf, %Sans Serif
% textfont={\setlength{\parindent}{1.5em}},
boxshade=plain,
% background=shade-tb,
background=plain,
linewidth=2pt
}
% University logo
{\includegraphics[height=6.5em]{tuckhseng_color}}
% Title
{\bf\Large{Developing a body schema by multi-sensory\\ integration thought recurrent basis functions and the contribution of the basal ganglia to motor learning}\vspace{5pt}}
% Authors
{\large Erik~Syniawa\textsuperscript{2}, Valentin~Forch\textsuperscript{1} and Fred~Hamker \\ \vspace{0.5em}
\small Contact: erik.syniawa@informatik.tu-chemnitz.de \\
\hspace{43pt} valentin.forch@informatik.tu-chemnitz.de
}
% Department logo and other logos
{
\begin{minipage}[r]{0.1\textwidth}
\includegraphics[height=7em]{active_self_logo_color}
\end{minipage}
\hfill
\begin{minipage}[r]{0.1\textwidth}
\includegraphics[height=6.5em]{TUC_AI_color}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% use height in headerbox to align multiple boxes
% height= <size in percent of column height>, else [auto]%
\headerbox{Overview}{name=overview,column=0,row=0, span=4}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
\begin{minipage}[l]{0.6\textwidth}
\justifying
\textbf{Main question:} \\
How can a robot develop \textit{awareness} of its own body by associating proprioception with touch and vision using sensory consequences of motor action? \\
\textbf{Neuro-computational model:} \\
Our model links \textit{sensory representations} within an integrated \textit{body schema}. Predictions and actual sensory results will be considered in the \textit{basal ganglia}. Through cortico-basal ganglia-thalamo-cortical loops the signal transmission will be modulated and dynamically influence the body schema.
\end{minipage}
\hfill
\begin{minipage}[r]{0.4\textwidth}
\hspace{5pt}
\includegraphics[width=\linewidth]{overview_model}
\captionof{figure}{Schematic overview of our model}
\end{minipage}
\end{adjustbox}
}
\headerbox{\large Sensory Integration\textsuperscript{1}}{name=rbf, column=0, below=overview, span=2, height=0.302}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
\textbf{\small Recurrent Basis Functions (RBF):} \\
\justifying
Information from different modalities is embedded within the reference frame of their coinciding sensory system.
RBF have been proposed as a model for multisensory integration between these reference frames \parencite{pougetComputationalPerspectiveNeural2002}. \\
Figure 2 shows an example where the position of the eyes and a joint are used to predict the position of a stimulus in retinocentric coordinates.
\vspace{1em}
\begin{center}
\includegraphics[width=0.72\linewidth]{pop_code_figure}
\captionof{figure}{Schematic representation of a RBF}
\end{center}
\end{adjustbox}
}
\headerbox{\large Learning a Body Schema\textsuperscript{1}}{name=network, column=2, below=overview, span=4, height=0.302}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
% Network definitions
\begin{minipage}[l]{0.30\textwidth}
\textbf{Rate-coded neural network:} \\
Our network simulates neural activity in continuous time and is driven by unsupervised Anti-Hebbian learning \parencite{teichmannLearningInvarianceNatural2012}. \\
Excitatory neurons learn to represent the statistical features of their inputs while inhibitory interneurons decorrelate the excitatory responses leading to a sparse neural code \parencite{foldiakFormingSparseRepresentations1990}. \\
\vspace{10pt}
\textbf{Neuron model:} \\
\footnotesize
$$\tau^{m} \frac{d m_{j} }{d t} + m_{j} = \sum_{j}{w_{ij} \cdot r_{i} } - \sum_{k}{c_{kj} \cdot r_{k} }$$
$$\tau^{\theta} \frac{d \theta_{j} }{d t} + \epsilon \cdot sign(\theta_{j}) = (r_{j} - r_{Target})$$
$$r_{j} = \left[\alpha \left(\frac{2}{1 + e^{-\beta(m_{j}-\theta_{j})}} -1 \right) \right]^{+}$$
\end{minipage}
\hfill
% Network Architecture
\begin{minipage}[r]{0.3\textwidth}
\begin{center}
\includegraphics[width=0.8\linewidth]{net}
\captionof{figure}{Network Architecture}
\end{center}
\vspace{22pt}
\textbf{Synaptic Learning Rules:} \\
\textit{Excitatory:}
\footnotesize
$$\tau^{ w }\frac{ dw_{ ij } }{ dt } = (r_{ i }-\hat r_{ i }) \cdot r_{j}-\alpha^{w}_{j}r^{2}_{j}w_{ij}$$
$$\tau^{ \alpha }\frac{ d \alpha^{w}_{j}}{ dt } = \left( \left[ r_{j} - \gamma\right]^{+} \right)^{2} - \alpha^{w}_{j} \text{ with: } w_{ij} = \left[w_{ij} \right]^{+}$$
\end{minipage}
\hfill
% Network Results
\begin{minipage}[r]{0.33\textwidth}
\textit{Inhibitory}:
\footnotesize
$$\tau^{ c }\frac{ dc_{ kj } }{ dt } = r_{ k } \cdot r_{ j } -\alpha^{c}_{j}r_{j}c_{kj}
\text{ with: } c_{kj} = \left[w_{kj} \right]^{+}$$
\vspace{15pt}
\small
\textbf{Results:} \\
RBF-Neurons develop gain fields that are shifting depending on the position of their reference frame. This behavior is also found in the cortex \parencite{pougetComputationalPerspectiveNeural2002}.
\vspace{10pt}
\begin{center}
\includegraphics[width=0.95\linewidth]{results_valentin}
\captionof{figure}{Gain Fields}
\end{center}
\hfill
\end{minipage}
\end{adjustbox}
}
\headerbox{\large References}{name=refs, column=0, above=bottom, span=6}{
\begin{adjustbox}{minipage=0.98\textwidth, margin=0pt, center}
\compressbib{\printbibliography[heading=none]}
\end{adjustbox}
}
\headerbox{\Large Setup}{name=setup,column=4,row=0, span=2, above=network}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
\vspace{1pt}
\centering
\includegraphics[width=0.75\linewidth]{robot_setup}
\captionof{figure}{Current virtual robot setup.}
\end{adjustbox}
}
\headerbox{\large Synaptic plasticity in the
Basal Ganglia\textsuperscript{2}}{name=bg, column=0, below=rbf, above=refs , span=3}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
\begin{minipage}[l]{0.45\textwidth}
\textbf{Network of the Basal Ganglia (BG):}\\
\vspace{15pt}
\begin{flushright}
\includegraphics[width=\linewidth]{BG}
\captionof{figure}{Modeling of segregated \\ basal ganglia pathways}
\end{flushright}
\vspace{25pt}
\justifying
Through \textit{dopamine-modulated plasticity}, the BG enable motor category learning \parencite{segerHowBasalGanglia2008a} and are involved in establishing associations between stimulus and responses \parencite{packardLearningMemoryFunctions2002a}. They act as a kind of reinforcement learning agent. \\
In our model the BG consist of 3 different pathways. All of them represent actual connections between the different nuclei of the BG (see Figure 6).
\vspace{5pt}
\end{minipage}
\hfill
\begin{minipage}[r]{0.55\textwidth}
\textbf{Learning in the different pathways:}\\
\justifying
The learning principles are primarily determined by \textit{presynaptic} and \textit{postsynaptic} activity, as well as the \textit{Dopamine signal} (\textbf{DA}). Together these principles form a 3-factor learning rule (see Table 1, modified after \cite{maithOptimalAttentionTuning2021c}).
\vspace{1pt}
\begin{itemize}
\item \textit{High} and \textit{low} indicate whether the pre- and post-activity is more than or less than a given threshold (e.g. mean activity).
\item \textit{DA+} and \textit{DA-} labels indicate if the DA levels exceed a given threshold or not.
\item The sign \textit{+} or \textit{-} represents the weight changes in the relevant projections for each combination.
\end{itemize}
\input{BG_table}
\captionof{table}{"+"=LTP; "-"=LTD; no sign = no weight change}
\end{minipage}
\end{adjustbox}
}
\headerbox{\large Motor Learning in the Basal Ganglia\textsuperscript{2}}{name=motor, column=3, below=network, above=refs , span=3}{
\begin{adjustbox}{minipage=0.95\textwidth, margin=5pt, center}
\begin{minipage}[l]{0.37\textwidth}
\textbf{Reaching task:} \\
A goal should be reached in a plane (\textcolor{green}{green}). The BG should choose the right movement trajectory (\textcolor{blue}{blue}) to get from a starting arm position (\textcolor{red}{red}) to a arm position, that is able to reach the goal (\textbf{black}, see Figure 7).
\vspace{3pt}
\includegraphics[width=0.9\linewidth]{movement}
\captionof{figure}{}
\vfill
\end{minipage}
\hfill
\begin{minipage}[r]{0.65\textwidth}
\vspace{30pt}
\includegraphics[width=0.98\linewidth]{BG_Learning}
\captionof{figure}{}
\end{minipage}
\vspace{1pt}
\begin{minipage}[b]{\textwidth}
\begin{multicols}{2}
Figure 8 shows the development of the connection strengths in the different paths.
At first, unrewarded connections, respectively movements that do not lead to the goal, are suppressed by the indirect path. Through rewarded selections, a direct and hyperdirect path slowly works its way out.\\
The direct pathway inhibits a neuron associated with rewards in the SNr, while the hyperdirect pathway specifically excites neurons encoding alternative motor actions in the SNr. This results in the activity of only one neuron in the thalamus, that corresponds with the right movement.
\end{multicols}
\end{minipage}
\end{adjustbox}
}
\end{poster}
\end{document}