USB Host HID (Human Interface
Device) Driver

Migration Guide from v.1.0.x to v2.0.x

About

This document describes the architectural changes from v1.0.x to version v2.0.x. In the end
of the document there are some tips to make the migration process from v1.0.x more easy.

Architecture Description

Driver v1.0.x

Main Events Handling

HID Driver (v1.0.x) - Main Events Handling

Roman Leo

v | July 20, 2023

s_hid_driver

Two independent STAILQ:
1. hid_devices_tailg
2. hid_ifaces_tailq

Logic:
1. Verify HID Interface presence in the new USB device
2. 1f there is no HID Interfaces, return
3. Open USB Device
a.Allocate USB Device object
b. Allocate CTRL XFR transfer buffer
¢. Add USB device object to hid_devices_taily
4. Add every HID Interface to hid_ifaces_tailg
a. Allocate HID Interface object
b. Callback call

Driver callback Events

Interface callback Events -

Logic:
1. Verify USB device handle in hid_devices_tailg
2. Disable all opened HID interfaces:
a. Free memory for EP IN transfer buffer
b. Change state for waiting of closing from application
logic
¢. Remove HID interface from the hid_ifaces_tailq
d. If HID Interface has been apened - callback call
e.If HiD Interface hasn't been opened - remove HID
interface object from hid_ifaces_tailg
3. Uninstall USB Device
a.Close USB Device
b. Remove USB Device object from hid_devices_tailq

USB_HOST_CLIENT_EVENT_NEW_DEV

ush_host_device_open()

usb_host_allocate_transfer()

USB_HOST_CLIENT_DEV_GONE

ush_host_interface_release()

usb_host_device_close()

Advantages
There is only one advantage:

1. After USB HID Device is connected and opened it is ready to work and be claimed

from the application logic.

-

A J

Disadvantages

There are several disadvantages:

1.

Complex and heavy logic during event USB_HOST_CLIENT_EVENT_NEW_DEV (device
creation, adding to the tail queue, memory allocation ...);

Memory allocation was made even if the HID Device is not used in application logic;

Complex logic during device closing while device has been opened or hasn't been
opened;

Complex and heavy logic during event USB_HOST_CLIENT_DEV_GONE (device
removing, working with tail queues, ...)

Requires to use the specific task in application logic to interact with HID device.

Driver v2.0.x

New Device/Dev Gone Events Handling

HID Driver (v2.0.x) - Main Events Handling

Roman Leonov | July 20, 2023

s_hid_driver
Two STAILQs:
dev_opened_tailgq ;
dev_obj | y|iface_opened_tailg }
iface_obj = USB_HOST_CLIENT_EVENT_NEW_DEV
Logic: usb_host_device_open()

1.0Open USB Device

2. Verify HID Interfaces present

HID Host Events 3.1f HID Interface not present, go to step 4. If present, for
every HID Interface:

a.Add CONNECT event to esp_event_loop

g usb_host_device_close()
4. Close USB Device

esp_evdnt_loop "

USB_HOST_CLIENT_DEV_GONE

Logic:

1. Verify USB device handle in dev_opened_tailg. If no
device has been found - return

2. For every opened HID Interface:
a.add DISCONNECT event to esp_event_loop

Open/Close Events Handling

hid_host_device_open(dev_addr, iface_num, sub_class, proto)

Logic:
1. Verify presence of USB Device in dev_opened_tailg
2.1f there is opened USB Device, go to step 4

a, Open USB Device

I

1

I

I

1

1

usb_host_device_open() I
b. Allocate CTRL XFR transfer buffer :
1

I

I

1

I

I

I

I

3. Verify iface_opened_tailg, if HID interface is claimed
return ERR_STATE

4. Claim HID Interface usb_host_interface_claim()
a. Allocate EP IN transfer buffer
b. Add HID Interface to iface_opened_tailg
c. Add event OPEN to esp_loop_event with iface_hdl

|
|
! - -
I e e
,-/L/’/z/} ,,—"")7
esp_evdnt_loop - =" -

hid_host_device_close(iface_hdl)

I

|

|

I

I

|

! i

|

| I

! |

! |

! |

! |

|

‘ :

I Logic: }

} 1. Verify HID Interface by iface_hd| in iface_opened_tailq |

| 2.If there is no iface_hdl, return ERR_NOT_FOUND }

} a. Release HID Interface |

! b. Stop EP IN and free transfer buffer }

} c. Remove HID Interface from iface_opened_tailq |

; d. free HID Interface object usb_host_interface_release() }

| e. Add event to esp_event_loop CLOSE ml

} 3. Verify amount of opened HID Interfaces for parent USB }

! |

| I

I

| I

| |

| I

‘ :
I
|
I
|
I

Device
4.1f there are still opened HID Interfaces - return with OK usb_host_device_close()

a, Close USB Device M |

b. Free CTRL XFR transfer buffer

¢. Remove USB Device from dev_opened_tailg

Advantages
There are several advantages:

1. No memory usage if HID device was not opened from application logic;

2. Eventdriven. There are only a callbacks to the application logic which are throwing
via event_loop from HID Driver. No any additional logic during the callbacks from the
levels underneath.

3. Simpler logic during device closing (we do not need keep the state of device in the
driver).

4. Usage of event_loop let the application logic do not use specific thread and queue
for HID Driver events handling.

Disadvantages
1. Usage of esp_event_loop (?)

Migration Tips

API changes
TBD

	About
	Architecture Description
	Driver v1.0.x
	Main Events Handling
	Advantages
	Disadvantages

	Driver v2.0.x
	New Device/Dev Gone Events Handling
	Open/Close Events Handling
	Advantages
	Disadvantages

	Migration Tips
	API changes

