-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (40 loc) · 1.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import hydra
from omegaconf import DictConfig, OmegaConf
# from hydra import initialize, compose
import os
import wandb
from dotenv import load_dotenv
import pandas as pd
import pickle
from data.data_utils import get_datasets
from Utils.models import TimEHR
@hydra.main(config_path="configs", config_name="config", version_base=None)
def train(cfg: DictConfig):
wandb_task_name = f"{cfg.data.name}-s{cfg.split}"
# saveing cfg to yaml in Results/wandb_task_name
os.makedirs("Results/" + wandb_task_name, exist_ok=True)
OmegaConf.save(
config=cfg, resolve=True, f="Results/" + wandb_task_name + "/config.yaml"
)
# loading data
train_dataset, val_dataset = get_datasets(
cfg.data, split=cfg.split, preprocess=True
)
# training model
model = TimEHR(cfg)
model.train(train_dataset, val_dataset, wandb_task_name=wandb_task_name)
model.save_to_yaml(folder=f"Results/{wandb_task_name}")
# # Alternatively, you can load a pre-trained model
# # model.from_pretrained(path_cwgan='hokarami/CWGAN/uj5gf643',path_pix2pix='hokarami/PIXGAN/lorajx1i')
# # get synthetic data
# fake_static, fake_data = model.generate(train_dataset, train_schema)
# df_ts_fake, df_demo_fake = mat2df(fake_data,fake_static, train_schema)
# print(df_ts_fake)
pass
if __name__ == "__main__":
# configurations are managed by hydra. You can modify them in the config/config.yaml file.
# setup wandb
load_dotenv()
wandb.login(key=os.getenv("WANDB_KEY"))
# api = wandb.Api()
train()