Skip to content

Latest commit

 

History

History
37 lines (29 loc) · 1.4 KB

README.md

File metadata and controls

37 lines (29 loc) · 1.4 KB

Multispectral conditional Generative Adversarial Nets

This repository is an implementation of "Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets".

Results

Requirements

I recommend Anaconda to manage your Python libraries.
Because it is easy to install some of the libraries necessary to prepare the data.

  • Python3 (tested with 3.5.4)
  • Chainer (tested with 5.0.0)
  • cupy (tested with 5.0.0)
  • matplotlib (tested with 2.2.2)
  • OpenCV (tested with 3.3.1)
  • tqdm (tested with 4.15.0)
  • PyYAML (tested with 3.12)
  • mpi4py (tested with 3.0.0)

Preparing the data

Please refer to make_dataset/README.md.

Training examples

You need set each parameters in a config file.

CUDA_VISIBLE_DEVICES=0 python train_pix2pix.py --config_path configs/config_nirrgb2rgbcloud.yml --results_dir results/pix2pix

If you want to resume the training from snapshot, use --snapshot option.

  • pretrained model (WIP)

Evaluation examples

CUDA_VISIBLE_DEVICES=0 python test.py --dir_nir <path to nir dir> --dir_rgb <path to rgb dir> --imlist_nir <path to nir list file> --imlist_rgb <path to rgb list file> --results_dir results/test_pix2pix --config_path results/pix2pix/config_nirrgb2rgbcloud.yml --gen_model results/pix2pix/Generator_<iterations>.npz

License

Academic use only.