This repository has been archived by the owner on Oct 10, 2018. It is now read-only.
forked from guillaumegenthial/sequence_tagging
-
Notifications
You must be signed in to change notification settings - Fork 7
/
build_data.py
executable file
·81 lines (63 loc) · 3.03 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import subprocess
from model.config import Config
from model.data_utils import CoNLLDataset, get_vocabs, UNK, NUM, \
get_word_vec_vocab, write_vocab, load_vocab, get_char_vocab, \
export_trimmed_word_vectors, get_processing_word
def main():
"""Procedure to build data
You MUST RUN this procedure. It iterates over the whole dataset (train,
dev and test) and extract the vocabularies in terms of words, tags, and
characters. Having built the vocabularies it writes them in a file. The
writing of vocabulary in a file assigns an id (the line #) to each word.
It then extract the relevant word2vec vectors and stores them in a np array
such that the i-th entry corresponds to the i-th word in the vocabulary.
Args:
config: (instance of Config) has attributes like hyper-params...
"""
# get config and processing of words
config = Config(load=False)
processing_word = get_processing_word(lowercase=False)
# Generators
dev = CoNLLDataset(config.filename_dev, processing_word)
test = CoNLLDataset(config.filename_test, processing_word)
train = CoNLLDataset(config.filename_train, processing_word)
# Build Word and Tag vocab
vocab_words, vocab_tags = get_vocabs([train, dev, test])
vocab = vocab_words
if "w2v" in config.use_pretrained:
vocab_word2vec = get_word_vec_vocab(config.filename_word2vec)
vocab = vocab_words & vocab_word2vec if config.use_pretrained == "w2v" else vocab_words
if config.replace_digits:
vocab.add(NUM)
vocab.add(UNK)
# Save vocab
write_vocab(vocab, config.filename_words)
write_vocab(vocab_tags, config.filename_tags)
# Trim FastText vectors
if "ft" in config.use_pretrained:
abs_f_words = os.path.abspath(config.filename_words)
abs_f_vec = os.path.abspath(config.filename_fasttext)
cmd = config.get_ft_vectors_cmd.format(abs_f_words, abs_f_vec)
subprocess.check_call(cmd, shell=True)
vocab = load_vocab(config.filename_words)
export_trimmed_word_vectors(vocab, config.filename_fasttext, config.filename_trimmed_ft, config.dim_word)
# Trim Morph2Vec vectors
if "m2v" in config.use_pretrained:
vocab = load_vocab(config.filename_words)
export_trimmed_word_vectors(vocab, config.filename_morph2vec,
config.filename_trimmed_m2v, config.dim_morph, partial_match=True)
# Trim word2vec Vectors
if "w2v" in config.use_pretrained:
vocab = load_vocab(config.filename_words)
export_trimmed_word_vectors(vocab, config.filename_word2vec,
config.filename_trimmed_w2v, config.dim_word)
# Build and save char vocab
train = CoNLLDataset(config.filename_train)
vocab_chars = get_char_vocab(train, False)
write_vocab(vocab_chars, config.filename_chars)
train = CoNLLDataset(config.filename_train)
vocab_ortho = get_char_vocab(train, True)
write_vocab(vocab_ortho, config.filename_ortho)
if __name__ == "__main__":
main()