This repository has been archived by the owner on Mar 30, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathrender.c
254 lines (232 loc) · 8.34 KB
/
render.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pixman.h>
#include "buffer.h"
#include "output-layout.h"
#include "render.h"
static pixman_format_code_t get_pixman_format(enum wl_shm_format wl_fmt) {
switch (wl_fmt) {
#if GRIM_LITTLE_ENDIAN
case WL_SHM_FORMAT_RGB332:
return PIXMAN_r3g3b2;
case WL_SHM_FORMAT_BGR233:
return PIXMAN_b2g3r3;
case WL_SHM_FORMAT_ARGB4444:
return PIXMAN_a4r4g4b4;
case WL_SHM_FORMAT_XRGB4444:
return PIXMAN_x4r4g4b4;
case WL_SHM_FORMAT_ABGR4444:
return PIXMAN_a4b4g4r4;
case WL_SHM_FORMAT_XBGR4444:
return PIXMAN_x4b4g4r4;
case WL_SHM_FORMAT_ARGB1555:
return PIXMAN_a1r5g5b5;
case WL_SHM_FORMAT_XRGB1555:
return PIXMAN_x1r5g5b5;
case WL_SHM_FORMAT_ABGR1555:
return PIXMAN_a1b5g5r5;
case WL_SHM_FORMAT_XBGR1555:
return PIXMAN_x1b5g5r5;
case WL_SHM_FORMAT_RGB565:
return PIXMAN_r5g6b5;
case WL_SHM_FORMAT_BGR565:
return PIXMAN_b5g6r5;
case WL_SHM_FORMAT_RGB888:
return PIXMAN_r8g8b8;
case WL_SHM_FORMAT_BGR888:
return PIXMAN_b8g8r8;
case WL_SHM_FORMAT_ARGB8888:
return PIXMAN_a8r8g8b8;
case WL_SHM_FORMAT_XRGB8888:
return PIXMAN_x8r8g8b8;
case WL_SHM_FORMAT_ABGR8888:
return PIXMAN_a8b8g8r8;
case WL_SHM_FORMAT_XBGR8888:
return PIXMAN_x8b8g8r8;
case WL_SHM_FORMAT_BGRA8888:
return PIXMAN_b8g8r8a8;
case WL_SHM_FORMAT_BGRX8888:
return PIXMAN_b8g8r8x8;
case WL_SHM_FORMAT_RGBA8888:
return PIXMAN_r8g8b8a8;
case WL_SHM_FORMAT_RGBX8888:
return PIXMAN_r8g8b8x8;
case WL_SHM_FORMAT_ARGB2101010:
return PIXMAN_a2r10g10b10;
case WL_SHM_FORMAT_ABGR2101010:
return PIXMAN_a2b10g10r10;
case WL_SHM_FORMAT_XRGB2101010:
return PIXMAN_x2r10g10b10;
case WL_SHM_FORMAT_XBGR2101010:
return PIXMAN_x2b10g10r10;
#else
case WL_SHM_FORMAT_ARGB8888:
return PIXMAN_b8g8r8a8;
case WL_SHM_FORMAT_XRGB8888:
return PIXMAN_b8g8r8x8;
case WL_SHM_FORMAT_ABGR8888:
return PIXMAN_r8g8b8a8;
case WL_SHM_FORMAT_XBGR8888:
return PIXMAN_r8g8b8x8;
case WL_SHM_FORMAT_BGRA8888:
return PIXMAN_a8r8g8b8;
case WL_SHM_FORMAT_BGRX8888:
return PIXMAN_x8r8g8b8;
case WL_SHM_FORMAT_RGBA8888:
return PIXMAN_a8b8g8r8;
case WL_SHM_FORMAT_RGBX8888:
return PIXMAN_x8b8g8r8;
#endif
default:
return 0;
}
}
static void compute_composite_region(const struct pixman_f_transform *out2com,
int output_width, int output_height, struct grim_box *dest,
bool *grid_aligned) {
struct pixman_transform o2c_fixedpt;
pixman_transform_from_pixman_f_transform(&o2c_fixedpt, out2com);
pixman_fixed_t w = pixman_int_to_fixed(output_width);
pixman_fixed_t h = pixman_int_to_fixed(output_height);
struct pixman_vector corners[4] = {
{{0, 0, pixman_fixed_1}},
{{w, 0, pixman_fixed_1}},
{{0, h, pixman_fixed_1}},
{{w, h, pixman_fixed_1}},
};
pixman_fixed_t x_min = INT32_MAX, x_max = INT32_MIN,
y_min = INT32_MAX, y_max = INT32_MIN;
for (int i = 0; i < 4; i++) {
pixman_transform_point(&o2c_fixedpt, &corners[i]);
x_min = corners[i].vector[0] < x_min ? corners[i].vector[0] : x_min;
x_max = corners[i].vector[0] > x_max ? corners[i].vector[0] : x_max;
y_min = corners[i].vector[1] < y_min ? corners[i].vector[1] : y_min;
y_max = corners[i].vector[1] > y_max ? corners[i].vector[1] : y_max;
}
*grid_aligned = pixman_fixed_frac(x_min) == 0 &&
pixman_fixed_frac(x_max) == 0 &&
pixman_fixed_frac(y_min) == 0 &&
pixman_fixed_frac(y_max) == 0;
int32_t x1 = pixman_fixed_to_int(pixman_fixed_floor(x_min));
int32_t x2 = pixman_fixed_to_int(pixman_fixed_ceil(x_max));
int32_t y1 = pixman_fixed_to_int(pixman_fixed_floor(y_min));
int32_t y2 = pixman_fixed_to_int(pixman_fixed_ceil(y_max));
*dest = (struct grim_box) {
.x = x1,
.y = y1,
.width = x2 - x1,
.height = y2 - y1
};
}
pixman_image_t *render(struct grim_state *state, struct grim_box *geometry,
double scale) {
pixman_image_t *common_image = pixman_image_create_bits(PIXMAN_a8r8g8b8,
geometry->width * scale, geometry->height * scale,
NULL, 0);
struct grim_output *output;
wl_list_for_each(output, &state->outputs, link) {
struct grim_buffer *buffer = output->buffer;
if (buffer == NULL) {
continue;
}
pixman_format_code_t pixman_fmt = get_pixman_format(buffer->format);
if (!pixman_fmt) {
fprintf(stderr, "unsupported format %d = 0x%08x\n",
buffer->format, buffer->format);
return NULL;
}
int32_t output_x = output->logical_geometry.x - geometry->x;
int32_t output_y = output->logical_geometry.y - geometry->y;
int32_t output_width = output->logical_geometry.width;
int32_t output_height = output->logical_geometry.height;
int32_t raw_output_width = output->geometry.width;
int32_t raw_output_height = output->geometry.height;
apply_output_transform(output->transform,
&raw_output_width, &raw_output_height);
int output_flipped_x = get_output_flipped(output->transform);
int output_flipped_y = output->screencopy_frame_flags &
ZWLR_SCREENCOPY_FRAME_V1_FLAGS_Y_INVERT ? -1 : 1;
pixman_image_t *output_image = pixman_image_create_bits(
pixman_fmt, buffer->width, buffer->height,
buffer->data, buffer->stride);
if (!output_image) {
fprintf(stderr, "Failed to create image\n");
return NULL;
}
// The transformation `out2com` will send a pixel in the output_image
// to one in the common_image
struct pixman_f_transform out2com;
pixman_f_transform_init_identity(&out2com);
pixman_f_transform_translate(&out2com, NULL,
-(double)output->geometry.width / 2,
-(double)output->geometry.height / 2);
pixman_f_transform_scale(&out2com, NULL,
(double)output_width / raw_output_width,
(double)output_height * output_flipped_y / raw_output_height);
pixman_f_transform_rotate(&out2com, NULL,
round(cos(get_output_rotation(output->transform))),
round(sin(get_output_rotation(output->transform))));
pixman_f_transform_scale(&out2com, NULL, output_flipped_x, 1);
pixman_f_transform_translate(&out2com, NULL,
(double)output_width / 2,
(double)output_height / 2);
pixman_f_transform_translate(&out2com, NULL, output_x, output_y);
pixman_f_transform_scale(&out2com, NULL, scale, scale);
struct grim_box composite_dest;
bool grid_aligned;
compute_composite_region(&out2com, buffer->width,
buffer->height, &composite_dest, &grid_aligned);
pixman_f_transform_translate(&out2com, NULL,
-composite_dest.x, -composite_dest.y);
struct pixman_f_transform com2out;
pixman_f_transform_invert(&com2out, &out2com);
struct pixman_transform c2o_fixedpt;
pixman_transform_from_pixman_f_transform(&c2o_fixedpt, &com2out);
pixman_image_set_transform(output_image, &c2o_fixedpt);
double x_scale = fmax(fabs(out2com.m[0][0]), fabs(out2com.m[0][1]));
double y_scale = fmax(fabs(out2com.m[1][0]), fabs(out2com.m[1][1]));
if (x_scale >= 0.75 && y_scale >= 0.75) {
// Bilinear scaling is relatively fast and gives decent
// results for upscaling and light downscaling
pixman_image_set_filter(output_image,
PIXMAN_FILTER_BILINEAR, NULL, 0);
} else {
// When downscaling, convolve the output_image so that each
// pixel in the common_image collects colors from a region
// of size roughly 1/x_scale*1/y_scale in the output_image
int n_values = 0;
pixman_fixed_t *conv = pixman_filter_create_separable_convolution(
&n_values,
pixman_double_to_fixed(fmax(1., 1. / x_scale)),
pixman_double_to_fixed(fmax(1., 1. / y_scale)),
PIXMAN_KERNEL_IMPULSE, PIXMAN_KERNEL_IMPULSE,
PIXMAN_KERNEL_LANCZOS2, PIXMAN_KERNEL_LANCZOS2,
2, 2);
pixman_image_set_filter(output_image,
PIXMAN_FILTER_SEPARABLE_CONVOLUTION, conv, n_values);
free(conv);
}
bool overlapping = false;
struct grim_output *other_output;
wl_list_for_each(other_output, &state->outputs, link) {
if (output != other_output && intersect_box(&output->logical_geometry,
&other_output->logical_geometry)) {
overlapping = true;
}
}
/* OP_SRC copies the image instead of blending it, and is much
* faster, but this a) is incorrect in the weird case where
* logical outputs overlap and are partially transparent b)
* can draw the edge between two outputs incorrectly if that
* edge is not exactly grid aligned in the common image */
pixman_op_t op = (grid_aligned && !overlapping) ? PIXMAN_OP_SRC : PIXMAN_OP_OVER;
pixman_image_composite32(op, output_image, NULL, common_image,
0, 0, 0, 0, composite_dest.x, composite_dest.y,
composite_dest.width, composite_dest.height);
pixman_image_unref(output_image);
}
return common_image;
}