-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
153 lines (122 loc) · 5.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import cv2
import sys
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
RESIZE_AOI = 256
RESIZE_FINAL = 227
FACE_PAD = 50
class FaceDetector(object):
def __init__(self, model_name, basename = 'frontal-face', tgtdir = '.'):
self.tgtdir = tgtdir
self.basename = basename
self.face_cascade = cv2.CascadeClassifier(model_name)
def run(self, image_file, min_height_dec = 20, min_width_dec = 20, min_height_thresh=50, min_width_thresh=50):
print(image_file)
img = cv2.imread(image_file)
min_h = int(max(img.shape[0] / min_height_dec, min_height_thresh))
min_w = int(max(img.shape[1] / min_width_dec, min_width_thresh))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.3, minNeighbors=5, minSize=(min_h,min_w))
images = []
for i, (x,y,w,h) in enumerate(faces):
images.append(self.sub_image('%s/%s-%d.jpg' % (self.tgtdir, self.basename, i+1), img, x, y, w, h))
print('%d faces detected' % len(images))
for (x,y,w,h) in faces:
self.draw_rect(img, x, y, w, h)
# Fix in case nothing found in the image
outfile = '%s/%s.jpg' % (self.tgtdir, self.basename)
cv2.imwrite(outfile, img)
return images, outfile
def sub_image(self, name, img, x, y, w, h):
upper_cut = [min(img.shape[0], y+h+FACE_PAD), min(img.shape[1], x+w+FACE_PAD)]
lower_cut = [max(y-FACE_PAD, 0), max(x-FACE_PAD, 0)]
roi_color = img[lower_cut[0]:upper_cut[0], lower_cut[1]:upper_cut[1]]
cv2.imwrite(name, roi_color)
return name
def draw_rect(self, img, x, y, w, h):
upper_cut = [min(img.shape[0], y+h+FACE_PAD), min(img.shape[1], x+w+FACE_PAD)]
lower_cut = [max(y-FACE_PAD, 0), max(x-FACE_PAD, 0)]
cv2.rectangle(img, (lower_cut[1],lower_cut[0]),(upper_cut[1],upper_cut[0]), (255,0,0), 2)
# Read image files
class ImageCoder(object):
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
self.crop = tf.image.resize_images(self._decode_jpeg, (RESIZE_AOI, RESIZE_AOI))
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self.crop, #self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
print(image.shape)
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def make_batch(filename, coder, multicrop):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'r') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crops = []
if multicrop is False:
print('Running a single image')
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
image = tf.image.per_image_whitening(crop)
crops.append(image)
else:
print('Running multi-cropped image')
h = image.shape[0]
w = image.shape[1]
print(h, w)
hl = h - RESIZE_FINAL
wl = w - RESIZE_FINAL
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
crops.append(tf.image.per_image_whitening(crop))
crops.append(tf.image.flip_left_right(crop))
print(hl, wl)
corners = [ (0, 0), (0, wl), (hl, 0), (hl, wl), (int(hl/2), int(wl/2))]
for corner in corners:
ch, cw = corner
print(ch, cw)
cropped = tf.image.crop_to_bounding_box(image, ch, cw, RESIZE_FINAL, RESIZE_FINAL)
crops.append(tf.image.per_image_whitening(cropped))
flipped = tf.image.flip_left_right(cropped)
crops.append(tf.image.per_image_whitening(flipped))
image_batch = tf.pack(crops)
return image_batch