-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathuserdef_output.c
317 lines (292 loc) · 9.78 KB
/
userdef_output.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#include "pluto.h"
#include "gamma_transp.h"
#include "capillary_wall.h"
#include "current_table.h"
#include "prototypes.h"
#include "debug_utilities.h"
#include "math.h"
#define WRITE_T_MU_NE_IONIZ YES
// This is a test
void ComputeJ1DforOutput(const Data *d, Grid *grid, double ***Jz);
void ComputeJrforOutput(const Data *d, Grid *grid, double ***Jr);
/* *************************************************************** */
void ComputeUserVar (const Data *d, Grid *grid)
/*
*
* PURPOSE
*
* Define user-defined output variables
*
*
*
***************************************************************** */
{
int i, j, k;
char Jz_name[] = "Jz";
char Jr_name[] = "Jr";
char interBound_name[] = "interBound";
char etax1_name[] = "etax1";
char knor_name[] = "knor";
char c2p_fail_name[] = "c2p_fail";
#if WRITE_T_MU_NE_IONIZ==YES
double ***T, ***ioniz, ***ne;
double v[NVAR]; /*[Ema] I hope that NVAR as dimension is fine!*/
int nv;
double mu;
#endif
#if MULTIPLE_GHOSTS==YES
Data *d_corrected_r, *d_corrected_z;
char vr_c_r_name[] = "vr_c_r", vr_c_z_name[] = "vr_c_z";
char vz_c_r_name[] = "vz_c_r", vz_c_z_name[] = "vz_c_z";
char rho_c_r_name[] = "rho_c_r", rho_c_z_name[] = "rho_c_z";
char Bx3_c_r_name[] = "Bx3_c_r", Bx3_c_z_name[] = "Bx3_c_z";
double unit_Mfield;
char T_c_z_name[] = "T_c_z", T_c_r_name[] = "T_c_r";
unit_Mfield = COMPUTE_UNIT_MFIELD(UNIT_VELOCITY, UNIT_DENSITY);
#endif
/******************************************************/
/*I allocate space for all the variables of the output*/
/******************************************************/
#if MULTIPLE_GHOSTS==YES
d_corrected_r = alloc_Data();
d_corrected_z = alloc_Data();
// print1("\nRicordati di deallocare d_corrected_r e ..._z !");
copy_Data_Vc(d_corrected_z, d);
copy_Data_Vc(d_corrected_r, d);
ApplyMultipleGhosts(d_corrected_r, IDIR);
ApplyMultipleGhosts(d_corrected_z, JDIR);
// I export the corrected vr, vz, rho
if (CheckUserVar(vr_c_r_name)) {
double ***vr_c_r;
vr_c_r = GetUserVar(vr_c_r_name);
DOM_LOOP (k,j,i) vr_c_r[k][j][i] = d_corrected_r->Vc[iVR][k][j][i]*UNIT_VELOCITY;
}
if (CheckUserVar(vr_c_z_name)) {
double ***vr_c_z;
vr_c_z = GetUserVar(vr_c_z_name);
DOM_LOOP (k,j,i) vr_c_z[k][j][i] = d_corrected_z->Vc[iVR][k][j][i]*UNIT_VELOCITY;
}
if (CheckUserVar(vz_c_r_name)) {
double ***vz_c_r;
vz_c_r = GetUserVar(vz_c_r_name);
DOM_LOOP (k,j,i) vz_c_r[k][j][i] = d_corrected_r->Vc[iVZ][k][j][i]*UNIT_VELOCITY;
}
if (CheckUserVar(vz_c_z_name)) {
double ***vz_c_z;
vz_c_z = GetUserVar(vz_c_z_name);
DOM_LOOP (k,j,i) vz_c_z[k][j][i] = d_corrected_z->Vc[iVZ][k][j][i]*UNIT_VELOCITY;
}
if (CheckUserVar(rho_c_r_name)) {
double ***rho_c_r;
rho_c_r = GetUserVar(rho_c_r_name);
DOM_LOOP (k,j,i) rho_c_r[k][j][i] = d_corrected_r->Vc[RHO][k][j][i]*UNIT_DENSITY;
}
if (CheckUserVar(rho_c_z_name)) {
double ***rho_c_z;
rho_c_z = GetUserVar(rho_c_z_name);
DOM_LOOP (k,j,i) rho_c_z[k][j][i] = d_corrected_z->Vc[RHO][k][j][i]*UNIT_DENSITY;
}
if (CheckUserVar(Bx3_c_r_name)) {
double ***Bx3_c_r;
Bx3_c_r = GetUserVar(Bx3_c_r_name);
DOM_LOOP (k,j,i) Bx3_c_r[k][j][i] = d_corrected_r->Vc[BX3][k][j][i]*unit_Mfield;
}
if (CheckUserVar(Bx3_c_z_name)) {
double ***Bx3_c_z;
Bx3_c_z = GetUserVar(Bx3_c_z_name);
DOM_LOOP (k,j,i) Bx3_c_z[k][j][i] = d_corrected_z->Vc[BX3][k][j][i]*unit_Mfield;
}
if (CheckUserVar(T_c_r_name)) {
double ***T_c_r;
T_c_r = GetUserVar(T_c_r_name);
DOM_LOOP (k,j,i) {
for (nv=NVAR; nv--;) v[nv] = d_corrected_r->Vc[nv][k][j][i];
if (GetPV_Temperature(v, &(T_c_r[k][j][i]) )!=0) {
#if WARN_ERR_COMP_TEMP
print1("ComputeUserVar:[Ema]Err.comp.temp");
#endif
}
}
}
if (CheckUserVar(T_c_z_name)) {
double ***T_c_z;
T_c_z = GetUserVar(T_c_z_name);
DOM_LOOP (k,j,i) {
for (nv=NVAR; nv--;) v[nv] = d_corrected_z->Vc[nv][k][j][i];
if (GetPV_Temperature(v, &(T_c_z[k][j][i]) )!=0) {
#if WARN_ERR_COMP_TEMP
print1("ComputeUserVar:[Ema]Err.comp.temp");
#endif
}
}
}
#endif
if (CheckUserVar (Jz_name)) {
double ***Jz;
Jz = GetUserVar(Jz_name);
ComputeJ1DforOutput(d, grid, Jz);
}
if (CheckUserVar (Jr_name)) {
double ***Jr;
Jr = GetUserVar(Jr_name);
ComputeJrforOutput(d, grid, Jr);
}
// I Export Internal boundary flags
if (CheckUserVar(interBound_name)) {
double ***interBound;
interBound = GetUserVar(interBound_name);
DOM_LOOP(k,j,i){
if ((int) (d->flag[k][j][i] & FLAG_INTERNAL_BOUNDARY)) {
interBound[k][j][i] = 33.3; //Just a conventional number
} else {
interBound[k][j][i] = 0.0; //Just a conventional number
}
}
}
if(CheckUserVar(etax1_name)) {
double ***etax1;
etax1 = GetUserVar(etax1_name);
DOM_LOOP(k,j,i) {
for (nv=NVAR; nv--;) v[nv] = d->Vc[nv][k][j][i];
#if RESISTIVITY != NO
Resistive_eta( v, grid[IDIR].x_glob[i], grid[JDIR].x_glob[j], grid[KDIR].x_glob[k], NULL, &(etax1[k][j][i]));
etax1[k][j][i] *= UNIT_ETA;
#else
etax1[k][j][i] = 0.0;
#endif
}
}
if (CheckUserVar(knor_name)) {
double ***knor;
double kpar, phi;
knor = GetUserVar(knor_name);
DOM_LOOP(k,j,i) {
for (nv=NVAR; nv--;) v[nv] = d->Vc[nv][k][j][i];
#if THERMAL_CONDUCTION != NO
TC_kappa( v, grid[IDIR].x_glob[i], grid[JDIR].x_glob[j], grid[KDIR].x_glob[k], &kpar, &(knor[k][j][i]), &phi);
knor[k][j][i] *= UNIT_KAPPA;
#else
knor[k][j][i] = 0.0;
#endif
}
}
if(CheckUserVar(c2p_fail_name)) {
double ***c2p_fail;
c2p_fail = GetUserVar(c2p_fail_name);
DOM_LOOP(k,j,i) {
if (d->flag[k][j][i] & FLAG_CONS2PRIM_FAIL) {
/* I guess this is not the most clever way to get the bit number which is on,
but I don't care, since this func. is called not very often */
c2p_fail[k][j][i] = 1;
} else {
c2p_fail[k][j][i] = 0;
}
}
}
#if WRITE_T_MU_NE_IONIZ==YES
T = GetUserVar("T");
#if EOS==PVTE_LAW
ioniz = GetUserVar("ioniz");
ne = GetUserVar("ne");
#endif
DOM_LOOP(k,j,i){
#if EOS==IDEAL
mu = MeanMolecularWeight(d->Vc);
T[k][j][i] = d->Vc[PRS][k][j][i]/d->Vc[RHO][k][j][i]*KELVIN*mu;
#elif EOS==PVTE_LAW
for (nv=NVAR; nv--;) v[nv] = d->Vc[nv][k][j][i];
if (GetPV_Temperature(v, &(T[k][j][i]) )!=0) {
#if WARN_ERR_COMP_TEMP
print1("ComputeUserVar:[Ema]Err.comp.temp");
#endif
}
// print1("\nI just assigned %g to T[%d][%d][%d] for output",T[k][j][i], k,j,i);
GetMu(T[k][j][i], v[RHO], &mu);
ioniz[k][j][i] = 1/mu - 1;
ne[k][j][i] = ioniz[k][j][i] * (v[RHO]*UNIT_DENSITY) / CONST_mp;
#endif
}
#endif
#if MULTIPLE_GHOSTS==YES
// free_Data(&d_corrected_r);
// free_Data(&d_corrected_z);
free_Data(d_corrected_r);
free_Data(d_corrected_z);
#endif
}
/* ************************************************************* */
void ChangeDumpVar ()
/*
*
*
*************************************************************** */
{
SetDumpVar("bx1", VTK_OUTPUT, NO);
SetDumpVar("bx2", VTK_OUTPUT, NO);
SetDumpVar("vx3", VTK_OUTPUT, NO);
}
void ComputeJ1DforOutput(const Data *d, Grid *grid, double ***Jz){
int i, j, k;
double *r, ***B;
double Jleft, Jright;
// RBox box;
double unit_Mfield;
unit_Mfield = COMPUTE_UNIT_MFIELD(UNIT_VELOCITY, UNIT_DENSITY);
r = grid[IDIR].x;
// x = grid[0].x_glob;
// print1("for 0, gbeg: %d, gend: %d", grid[IDIR].gbeg, grid[IDIR].gend);
B = d->Vc[iBPHI];
DOM_LOOP(k,j,i){
if (i == IBEG){
Jz[k][j][i] = -2/(r[i]+r[i+1]) * (B[k][j][i+1]*r[i+1]-B[k][j][i]*r[i])/(r[i+1]-r[i]);
}
else if (i == IEND){
Jz[k][j][i] = -2/(r[i-1]+r[i]) * (B[k][j][i]*r[i]-B[k][j][i-1]*r[i-1])/(r[i]-r[i-1]);
} else {
Jleft = -2/(r[i-1]+r[i]) * (B[k][j][i]*r[i]-B[k][j][i-1]*r[i-1])/(r[i]-r[i-1]);
Jright = -2/(r[i]+r[i+1]) * (B[k][j][i+1]*r[i+1]-B[k][j][i]*r[i])/(r[i+1]-r[i]);
Jz[k][j][i] = 0.5*(Jleft+Jright);
}
// Now I make Jz dimensional
Jz[k][j][i] *= CONST_c/(4*CONST_PI)*unit_Mfield/UNIT_LENGTH;
// I put to zero the current density where I don't need it
}
// Now I put to 0 the Jr where I have boundary
// (I could not do it before, as I need some values at the internal boundary
// to compute some values near the internal boundary)
DOM_LOOP(k,j,i)
if ((int) (d->flag[k][j][i] & FLAG_INTERNAL_BOUNDARY))
Jz[k][j][i] = 0.0;
}
void ComputeJrforOutput(const Data *d, Grid *grid, double ***Jr) {
int i, j, k;
double *z, ***B;
double Jleft, Jright;
// RBox box;
double unit_Mfield;
unit_Mfield = COMPUTE_UNIT_MFIELD(UNIT_VELOCITY, UNIT_DENSITY);
z = grid[JDIR].x;
// x = grid[0].x_glob;
// print1("for 0, gbeg: %d, gend: %d", grid[IDIR].gbeg, grid[IDIR].gend);
B = d->Vc[iBPHI];
DOM_LOOP(k,j,i){
if (i == IBEG){
Jr[k][j][i] = (B[k][j+1][i]-B[k][j][i])/(z[j+1]-z[j]);
}
else if (i == IEND){
Jr[k][j][i] = (B[k][j][i]-B[k][j-1][i])/(z[j+1]-z[j]);
} else {
Jleft = (B[k][j][i]-B[k][j-1][i])/(z[j]-z[j-1]);
Jright = (B[k][j+1][i]-B[k][j][i])/(z[j+1]-z[j]);
Jr[k][j][i] = 0.5*(Jleft+Jright);
}
// Now I make Jr dimensional
Jr[k][j][i] *= CONST_c/(4*CONST_PI)*unit_Mfield/UNIT_LENGTH;
}
// Now I put to 0 the Jr where I have boundary
// (I could not do it before, as I need some values at the internal boundary
// to compute some values near the internal boundary)
DOM_LOOP(k,j,i)
if ((int) (d->flag[k][j][i] & FLAG_INTERNAL_BOUNDARY))
Jr[k][j][i] = 0.0;
}