-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
87 lines (63 loc) · 2.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Main script for training
"""
import os
import hydra
import torch
torch.cuda.empty_cache()
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
import numpy as np
def run(args):
"""Loads all the modules and starts the training
Args:
args:
Hydra dictionary
"""
#some preparation of the hydra args
args = OmegaConf.structured(OmegaConf.to_yaml(args))
#choose gpu as the device if possible
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
dirname = os.path.dirname(__file__)
#define the path where weights will be loaded and saved
args.model_dir = os.path.join(dirname, str(args.model_dir))
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
torch.backends.cudnn.benchmark = True
def worker_init_fn(worker_id):
st=np.random.get_state()[2]
np.random.seed( st+ worker_id)
print("Training on: ",args.dset.name)
#prepare the dataset loader
import src.dataset_loader as dataset
dataset_train=dataset.TrainDataset( args.dset, args.sample_rate*args.resample_factor,args.audio_len*args.resample_factor)
train_loader=DataLoader(dataset_train,num_workers=args.num_workers, batch_size=args.batch_size, worker_init_fn=worker_init_fn)
train_set = iter(train_loader)
#prepare the model architecture
if args.architecture=="unet_CQT":
from src.models.unet_cqt import Unet_CQT
model=Unet_CQT(args, device).to(device)
elif args.architecture=="unet_STFT":
from src.models.unet_stft import Unet_STFT
self.model=Unet_STFT(self.args, self.device).to(self.device)
elif args.architecture=="unet_1d":
from src.models.unet_1d import Unet_2d
self.model=Unet_1d(self.args, self.device).to(self.device)
else:
raise NotImplementedError
#prepare the optimizer
from src.learner import Learner
learner = Learner(
args.model_dir, model, train_set, args, log=args.log
)
#start the training
learner.train()
def _main(args):
global __file__
__file__ = hydra.utils.to_absolute_path(__file__)
run(args)
@hydra.main(config_path="conf", config_name="conf")
def main(args):
_main(args)
if __name__ == "__main__":
main()