-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
232 lines (167 loc) · 11.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import ee
import os
import argparse
import json
from tqdm import tqdm
from datetime import datetime
# ee.Authenticate()
ee.Initialize()
def get_collection(geometry, col_id, start_date , end_date, num_per_month, cloud_cover, addNDVI, footprint_id, speckle_filter, kernel_size):
if 'S2' in col_id:
collection = ee.ImageCollection(col_id).filterDate(start_date,end_date).filterBounds(geometry).filter(
ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE',cloud_cover)).select(
['B2','B3','B4','B5', 'B6','B7','B8','B8A','B11','B12'])
if footprint_id is not None:
collection = collection.filter(ee.Filter.inList('MGRS_TILE', ee.List(footprint_id)))
# compute NDVI
if addNDVI:
collection = collection.map(lambda img: ee.Image(img).addBands(img.normalizedDifference(['B8', 'B4']).rename('ndvi')))
# get normalisation statistics (placed prior to any parcel clipping operation)
collection = collection.map(lambda img: img.set('stats', ee.Image(img).reduceRegion(reducer=ee.Reducer.percentile([2, 98]), bestEffort=True)))
elif 'S1' in col_id:
collection = ee.ImageCollection(col_id).filter(ee.Filter.eq('instrumentMode', 'IW')).filterDate(
start_date, end_date).filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')).filter(
ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')).filterBounds(geometry).select(['VV','VH']).filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING')).sort('system:time_start', True)
if footprint_id is not None:
collection = collection.filter(ee.Filter.inList('relativeOrbitNumber_start', ee.List(footprint_id)))
# get normalisation statistics (placed prior to any parcel clipping operation)
collection = collection.map(lambda img: img.set('stats', ee.Image(img).reduceRegion(reducer=ee.Reducer.percentile([2, 98]), bestEffort=True)))
# clip using 1km buffer of geometry to avoid excessive computation in speckle filtering
collection = collection.map(lambda img: ee.Image(img).clip(geometry.bounds().buffer(1000)))
# multi-temporal speckle reduction
if speckle_filter == 'temporal':
collection = multitemporalDespeckle(collection, kernel_size, units ='pixels', opt_timeWindow={'before': -2, 'after': 2, 'units': 'month'})
# focal mean
elif speckle_filter == 'mean':
collection = collection.map(lambda img: ee.Image(img).focal_mean(radius = kernel_size, kernelType = 'square', units='pixels').copyProperties(img, ["system:time_start", "stats"]))
# focal median
elif speckle_filter == 'median':
collection = collection.map(lambda img: ee.Image(img).focal_median(radius = kernel_size, kernelType = 'square', units='pixels').copyProperties(img, ["system:time_start", "stats"]))
# co-register Sentinel-1 & Sentinel-2
collection = collection.map(lambda img: ee.Image(img).reproject(crs = 'EPSG:32630', crsTransform = [10, 0, 399960, 0, -10, 5400000]))
# checks for partly-covered and duplicate footprints and clip collection to geometry
collection = overlap_filter(collection, geometry)
# return one image per month
if num_per_month > 0:
collection = monthly_(col_id, collection, start_year = int(start_date[:4]), end_year = int(end_date[:4]), num_per_month=num_per_month)
return collection
def monthly_(col_id, collection, start_year, end_year, num_per_month):
"""
description:
return n images per month for a given year sequence
"""
months = ee.List.sequence(1, 12)
years = ee.List.sequence(start_year, end_year)
try:
if 'S2' in col_id:
collection = ee.ImageCollection.fromImages(years.map(lambda y: months.map(lambda m: collection.filter(
ee.Filter.calendarRange(y, y, 'year')).filter(ee.Filter.calendarRange(m, m, 'month')).sort(
'CLOUDY_PIXEL_PERCENTAGE').toList(num_per_month))).flatten())
# sort by doa for ordered date sequence
collection = collection.sort('system:time_start')
elif 'S1' in col_id:
collection = ee.ImageCollection.fromImages(years.map(lambda y: months.map(lambda m: collection.filter(
ee.Filter.calendarRange(y, y, 'year')).filter(ee.Filter.calendarRange(m, m, 'month'))
.toList(num_per_month))).flatten())
collection = collection.sort('system:time_start')
return collection
except:
print("collection cannot be filtered")
def prepare_output(output_path):
# creates output directory
os.makedirs(output_path, exist_ok=True)
os.makedirs(os.path.join(output_path, 'DATA'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'META'), exist_ok=True)
def parse_rpg(rpg_file, label_names=['CODE_GROUP'], id_field = 'ID_PARCEL'):
"""Reads rpg and returns a dict of pairs (ID_PARCEL : Polygon) and a dict of dict of labels
{label_name1: {(ID_PARCEL : Label value)},
label_name2: {(ID_PARCEL : Label value)}
}
"""
# Read rpg file
print('Reading RPG . . .')
with open(rpg_file) as f:
data = json.load(f)
# Get list of polygons
polygons = {}
lab_rpg = dict([(l, {}) for l in label_names])
for f in tqdm(data['features']):
# p = Polygon(f['geometry']['coordinates'][0][0])
p = f["geometry"]["coordinates"][0]
polygons[f['properties'][id_field]] = p
for l in label_names:
lab_rpg[l][f['properties'][id_field]] = f['properties'][l]
return polygons, lab_rpg
# def shapely2ee(geometry):
# # converts geometry to GEE server object
# pt_list = list(zip(*geometry.exterior.coords.xy))
# return ee.Geometry.Polygon(pt_list)
def geom_features(geometry):
# computes geometric info per parcel
area = geometry.area().getInfo()
perimeter = geometry.perimeter().getInfo()
bbox = geometry.bounds()
return perimeter, perimeter/area, bbox
def overlap_filter(collection, geometry):
# set masked/no data pixels to -9999
collection = collection.filterBounds(geometry).map(lambda image: ee.Image(image).unmask(-9999).clip(geometry))
#add image properties {doa, noData & overlap assertions}
collection = collection.map(lambda image: image.set({
'doa': ee.Date(image.get('system:time_start')).format('YYYYMMdd'),
'noData': ee.Image(image).clip(geometry).reduceRegion(ee.Reducer.toList(), geometry).values().flatten().contains(-9999),
'overlap': ee.Image(image).geometry().contains(geometry, 0.01)}))
# remove tiles containing masked pixels, select one of many overlapping tiles over a parcel
collection = collection.filter(ee.Filter.eq('noData', False)).filter(ee.Filter.eq('overlap',True)).distinct('doa')
return collection
# min-max normalisation using 2 & 98 percentile
def normalize(img):
img = ee.Image(img)
def norm_band(name):
name = ee.String(name)
stats = ee.Dictionary(img.get('stats'))
p2 = ee.Number(stats.get(name.cat('_p2')))
p98 = ee.Number(stats.get(name.cat('_p98')))
stats_img = img.select(name).subtract(p2).divide((p98.subtract(p2)))
return stats_img
new_img = img.addBands(srcImg = ee.ImageCollection.fromImages(img.bandNames().map(norm_band)).toBands().rename(img.bandNames()), overwrite=True)
return new_img.toFloat()
def multitemporalDespeckle(images, kernel_size, units ='pixels', opt_timeWindow={'before': -2, 'after': 2, 'units': 'month'}):
bandNames = ee.Image(images.first()).bandNames()
bandNamesMean = bandNames.map(lambda b: ee.String(b).cat('_mean'))
bandNamesRatio = bandNames.map(lambda b: ee.String(b).cat('_ratio'))
# compute space-average for all images
def space_avg(image):
mean = image.reduceNeighborhood(ee.Reducer.mean(), ee.Kernel.square(kernel_size, units)).rename(bandNamesMean)
ratio = image.divide(mean).rename(bandNamesRatio)
return image.addBands(mean).addBands(ratio)
meanSpace = images.map(space_avg)
def multitemporalDespeckleSingle(image):
t = ee.Image(image).date()
start = t.advance(ee.Number(opt_timeWindow['before']), opt_timeWindow['units'])
end = t.advance(ee.Number(opt_timeWindow['after']), opt_timeWindow['units'])
meanSpace2 = ee.ImageCollection(meanSpace).select(bandNamesRatio).filterDate(start, end)
b = image.select(bandNamesMean)
return b.multiply(meanSpace2.sum()).divide(meanSpace2.size()).rename(bandNames).copyProperties(image, ['system:time_start', 'stats'])
# denoise images
return meanSpace.map(multitemporalDespeckleSingle).select(bandNames)
def parse_args():
parser = argparse.ArgumentParser(description='Query GEE for time series data and return numpy array per parcel')
# parcels geometryies (json)
parser.add_argument('rpg_file', type=str, help="path to json with attributes ID_PARCEL, CODE_GROUP")
parser.add_argument('--id_field', type=str, default='ID_PARCEL', nargs="?", help='parcel id column name in json file')
parser.add_argument('--label_names', type=list, default=['CODE_GROUP'], nargs="?", help='label column name in json file')
# GEE params
parser.add_argument('output_dir', type=str, help='output directory')
parser.add_argument('--col_id', type=str, default="COPERNICUS/S2_SR", nargs="?", help="GEE collection ID e.g. 'COPERNICUS/S2_SR' or 'COPERNICUS/S1_GRD'")
parser.add_argument('--start_date', type=str, default='2018-10-01', nargs="?", help='start date YYYY-MM-DD')
parser.add_argument('--end_date', type=str, default='2019-12-31', nargs="?", help='end date YYYY-MM-DD')
parser.add_argument('--num_per_month', type=int, default=0, nargs="?", help='number of scenes per month. if 0 returns all')
parser.add_argument('--footprint_id', type=list, default=None, nargs="?", help='granule/orbit identifier for Sentinel-1 eg [153, 154] or Sentinel-2 eg ["30UUU"]')
# Sentinel-1
parser.add_argument('--speckle_filter', type=str, default='temporal', nargs="?", help='reduce speckle using multi-temporal despeckling. options = [temporal, mean, median]')
parser.add_argument('--kernel_size', type=int, default =5, nargs="?", help='kernel/window size in pixels for despeckling')
# Sentinel-2
parser.add_argument('--cloud_cover', type=int, default=80, nargs="?", help='cloud cover threshold')
parser.add_argument('--addNDVI', type=bool, default=False, nargs="?", help='computes and append ndvi as additional band')
return parser.parse_args()