Skip to content

Latest commit

 

History

History
2995 lines (2600 loc) · 192 KB

related.md

File metadata and controls

2995 lines (2600 loc) · 192 KB
layout title short parent
page
Publications Implemented or Referenced by ELKI
Implemented Papers
algorithms

Publications Implemented or Referenced by ELKI

The following publications are cited by classes in ELKI (as of ELKI 0.8.0):

elki.algorithm.DependencyDerivator
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Arthur Zimek
Deriving Quantitative Dependencies for Correlation Clusters
In: Proc. 12th Int. Conf. on Knowledge Discovery and Data Mining (KDD '06)
DOI:10.1145/1150402.1150408
DBLP:conf/kdd/AchtertBKKZ06

elki.algorithm.KNNDistancesSampler,
elki.clustering.dbscan.DBSCAN,
elki.clustering.dbscan.predicates.EpsilonNeighborPredicate,
elki.clustering.dbscan.predicates.MinPtsCorePredicate,
elki.clustering.dbscan.predicates.SimilarityNeighborPredicate
Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96)
Online: http://www.aaai.org/Library/KDD/1996/kdd96-037.php
DBLP:conf/kdd/EsterKSX96

elki.algorithm.KNNDistancesSampler,
elki.clustering.dbscan.DBSCAN
Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu
DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN
In: ACM Trans. Database Systems (TODS)
DOI:10.1145/3068335
DBLP:journals/tods/SchubertSEKX17

elki.algorithm.statistics.HopkinsStatisticClusteringTendency
B. Hopkins, J. G. Skellam
A new method for determining the type of distribution of plant individuals
In: Annals of Botany, 18(2), 213-227
DOI:10.1093/oxfordjournals.aob.a083391

elki.application.AbstractApplication
Erich Schubert
Automatic Indexing for Similarity Search in ELKI
In: Int. Conf. Similarity Search and Applications
DOI:10.1007/978-3-031-17849-8_16
DBLP:conf/sisap/Schubert22

elki.application.experiments.VisualizeGeodesicDistances,
elki.distance.geo.DimensionSelectingLatLngDistance,
elki.distance.geo.LatLngDistance,
elki.distance.geo.LngLatDistance,
elki.math.geodesy.SphereUtil
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel
Geodetic Distance Queries on R-Trees for Indexing Geographic Data
In: Int. Symp. Advances in Spatial and Temporal Databases (SSTD'2013)
DOI:10.1007/978-3-642-40235-7_9
DBLP:conf/ssd/SchubertZK13

elki.application.greedyensemble.ComputeKNNOutlierScores,
elki.application.greedyensemble.GreedyEnsembleExperiment,
elki.application.greedyensemble.VisualizePairwiseGainMatrix
Erich Schubert, Remigius Wojdanowski, Arthur Zimek, Hans-Peter Kriegel
On Evaluation of Outlier Rankings and Outlier Scores
In: Proc. 12th SIAM Int. Conf. on Data Mining (SDM 2012)
DOI:10.1137/1.9781611972825.90
DBLP:conf/sdm/SchubertWZK12

elki.clustering.affinitypropagation.AffinityPropagation
B. J. Frey, D. Dueck
Clustering by Passing Messages Between Data Points
In: Science Vol 315
DOI:10.1126/science.1136800

elki.clustering.BetulaLeafPreClustering,
elki.clustering.em.BetulaGMM,
elki.clustering.em.BetulaGMMWeighted,
elki.clustering.em.models.BetulaClusterModel,
elki.clustering.em.models.BetulaClusterModelFactory,
elki.clustering.em.models.BetulaDiagonalGaussianModelFactory,
elki.clustering.em.models.BetulaMultivariateGaussianModelFactory,
elki.clustering.em.models.BetulaSphericalGaussianModelFactory,
elki.clustering.kmeans.BetulaLloydKMeans,
elki.clustering.kmeans.initialization.betula.CFKPlusPlusLeaves,
elki.clustering.kmeans.initialization.betula.CFKPlusPlusTree,
elki.clustering.kmeans.initialization.betula.CFKPlusPlusTrunk,
elki.clustering.kmeans.initialization.betula.CFRandomlyChosen,
elki.clustering.kmeans.initialization.betula.CFWeightedRandomlyChosen,
elki.clustering.kmeans.initialization.betula.InterclusterWeight,
elki.clustering.kmeans.initialization.betula.SquaredEuclideanWeight,
elki.clustering.kmeans.initialization.betula.VarianceWeight,
elki.index.tree.betula.CFTree,
elki.index.tree.betula.distance.AverageInterclusterDistance,
elki.index.tree.betula.distance.AverageIntraclusterDistance,
elki.index.tree.betula.distance.CentroidEuclideanDistance,
elki.index.tree.betula.distance.CentroidManhattanDistance,
elki.index.tree.betula.distance.RadiusDistance,
elki.index.tree.betula.distance.VarianceIncreaseDistance
Andreas Lang and Erich Schubert
BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees
In: Information Systems
DOI:10.1016/j.is.2021.101918
DBLP:journals/is/LangS22

elki.clustering.biclustering.ChengAndChurch
Y. Cheng, G. M. Church
Biclustering of expression data
In: Proc. 8th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB)
Online: http://www.aaai.org/Library/ISMB/2000/ismb00-010.php
DBLP:conf/ismb/ChengC00

elki.clustering.CanopyPreClustering
A. McCallum, K. Nigam, L. H. Ungar
Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching
In: Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
DOI:10.1145/347090.347123
DBLP:conf/kdd/McCallumNU00

elki.clustering.CFSFDP
A. Rodriguez and A. Laio
Clustering by fast search and find of density peaks
In: Science 344 (6191)
DOI:10.1126/science.1242072

elki.clustering.correlation.CASH
Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, Arthur Zimek
Robust clustering in arbitrarily oriented subspaces
In: Proc. 8th SIAM Int. Conf. on Data Mining (SDM'08)
DOI:10.1137/1.9781611972788.69
DBLP:conf/sdm/AchtertBDKZ08

elki.clustering.correlation.COPAC,
elki.clustering.dbscan.predicates.COPACNeighborPredicate
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Arthur Zimek
Robust, Complete, and Efficient Correlation Clustering
In: Proc. 7th SIAM Int. Conf. on Data Mining (SDM'07)
DOI:10.1137/1.9781611972771.37
DBLP:conf/sdm/AchtertBKKZ07

elki.clustering.correlation.ERiC,
elki.clustering.dbscan.predicates.ERiCNeighborPredicate
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Arthur Zimek
On Exploring Complex Relationships of Correlation Clusters
In: Proc. 19th Int. Conf. Scientific and Statistical Database Management (SSDBM 2007)
DOI:10.1109/SSDBM.2007.21
DBLP:conf/ssdbm/AchtertBKKZ07

elki.clustering.correlation.FourC,
elki.clustering.dbscan.predicates.FourCCorePredicate,
elki.clustering.dbscan.predicates.FourCNeighborPredicate
Christian Böhm, Karin Kailing, Peer Kröger, Arthur Zimek
Computing Clusters of Correlation Connected Objects
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2004)
DOI:10.1145/1007568.1007620
DBLP:conf/sigmod/BohmKKZ04

elki.clustering.correlation.HiCO
Elke Achtert, Christian Böhm, Peer Kröger, Arthur Zimek
Mining Hierarchies of Correlation Clusters
In: Proc. Int. Conf. on Scientific and Statistical Database Management (SSDBM'06)
DOI:10.1109/SSDBM.2006.35
DBLP:conf/ssdbm/AchtertBKZ06

elki.clustering.correlation.LMCLUS
R. Haralick, R. Harpaz
Linear manifold clustering in high dimensional spaces by stochastic search
In: Pattern Recognition volume 40, Issue 10
DOI:10.1016/j.patcog.2007.01.020
DBLP:journals/pr/HaralickH07

elki.clustering.correlation.ORCLUS
C. C. Aggarwal, P. S. Yu
Finding Generalized Projected Clusters in High Dimensional Spaces
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '00)
DOI:10.1145/342009.335383
DBLP:conf/sigmod/AggarwalY00

elki.clustering.dbscan.GeneralizedDBSCAN
Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu
Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications
In: Data Mining and Knowledge Discovery
DOI:10.1023/A:1009745219419
DBLP:journals/datamine/SanderEKX98

elki.clustering.dbscan.GriDBSCAN
S. Mahran, K. Mahar
Using grid for accelerating density-based clustering
In: 8th IEEE Int. Conf. on Computer and Information Technology
DOI:10.1109/CIT.2008.4594646
DBLP:conf/IEEEcit/MahranM08

elki.clustering.dbscan.LSDBC
E. Biçici, D. Yuret
Locally Scaled Density Based Clustering
In: Adaptive and Natural Computing Algorithms
DOI:10.1007/978-3-540-71618-1_82
DBLP:conf/icannga/BiciciY07

elki.clustering.dbscan.parallel.ParallelGeneralizedDBSCAN
closely related
M. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, A. Choudhary
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure
In: IEEE Int. Conf. for High Performance Computing, Networking, Storage and Analysis (SC)
DOI:10.1109/SC.2012.9
DBLP:conf/sc/PatwaryPALMC12

elki.clustering.dbscan.predicates.PreDeConCorePredicate,
elki.clustering.dbscan.predicates.PreDeConNeighborPredicate,
elki.clustering.subspace.PreDeCon
Christian Böhm, Karin Kailing, Hans-Peter Kriegel, Peer Kröger
Density Connected Clustering with Local Subspace Preferences
In: Proc. 4th IEEE Int. Conf. on Data Mining (ICDM'04)
DOI:10.1109/ICDM.2004.10087
DBLP:conf/icdm/BohmKKK04

elki.clustering.em.EM
C. Fraley, A. E. Raftery
Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering
In: J. Classification 24(2)
DOI:10.1007/s00357-007-0004-5
DBLP:journals/classification/FraleyR07

elki.clustering.em.EM
A. P. Dempster, N. M. Laird, D. B. Rubin
Maximum Likelihood from Incomplete Data via the EM algorithm
In: Journal of the Royal Statistical Society, Series B, 39(1)
Online: http://www.jstor.org/stable/2984875

elki.clustering.em.KDTreeEM
Andrew W. Moore
Very Fast EM-based Mixture Model Clustering using Multiresolution kd-trees
In: Advances in Neural Information Processing Systems 11 (NIPS 1998)
DBLP:conf/nips/Moore98

elki.clustering.hierarchical.AbstractHDBSCAN,
elki.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction,
elki.clustering.hierarchical.extraction.SimplifiedHierarchyExtraction,
elki.clustering.hierarchical.HDBSCANLinearMemory,
elki.clustering.hierarchical.SLINKHDBSCANLinearMemory
R. J. G. B. Campello, D. Moulavi, J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
In: Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD)
DOI:10.1007/978-3-642-37456-2_14
DBLP:conf/pakdd/CampelloMS13

elki.clustering.hierarchical.AGNES,
tutorial.clustering.NaiveAgglomerativeHierarchicalClustering3,
tutorial.clustering.NaiveAgglomerativeHierarchicalClustering4
R. M. Cormack
A Review of Classification
In: Journal of the Royal Statistical Society. Series A, Vol. 134, No. 3
DOI:10.2307/2344237

elki.clustering.hierarchical.AGNES
L. Kaufman, P. J. Rousseeuw
Agglomerative Nesting (Program AGNES)
In: Finding Groups in Data: An Introduction to Cluster Analysis
DOI:10.1002/9780470316801.ch5

elki.clustering.hierarchical.AGNES
P. H. Sneath
The application of computers to taxonomy
In: Journal of general microbiology, 17(1)
DOI:10.1099/00221287-17-1-201

elki.clustering.hierarchical.Anderberg,
elki.clustering.hierarchical.MiniMaxAnderberg
M. R. Anderberg
Hierarchical Clustering Methods
In: Cluster Analysis for Applications

elki.clustering.hierarchical.birch.AverageInterclusterDistance,
elki.clustering.hierarchical.birch.AverageIntraclusterDistance,
elki.clustering.hierarchical.birch.CentroidEuclideanDistance,
elki.clustering.hierarchical.birch.CentroidManhattanDistance,
elki.clustering.hierarchical.birch.VarianceIncreaseDistance,
elki.index.tree.betula.distance.BIRCHAverageInterclusterDistance,
elki.index.tree.betula.distance.BIRCHAverageIntraclusterDistance,
elki.index.tree.betula.distance.BIRCHVarianceIncreaseDistance
T. Zhang
Data Clustering for Very Large Datasets Plus Applications
In: University of Wisconsin Madison, Technical Report #1355
Online: ftp://ftp.cs.wisc.edu/pub/techreports/1997/TR1355.pdf

elki.clustering.hierarchical.birch.BIRCHLeafClustering,
elki.clustering.hierarchical.birch.BIRCHLloydKMeans,
elki.clustering.hierarchical.birch.CFTree,
elki.index.tree.betula.CFTree
T. Zhang, R. Ramakrishnan, M. Livny
BIRCH: A New Data Clustering Algorithm and Its Applications
In: Data Min. Knowl. Discovery
DOI:10.1023/A:1009783824328
DBLP:journals/datamine/ZhangRL97

elki.clustering.hierarchical.birch.BIRCHLeafClustering,
elki.clustering.hierarchical.birch.BIRCHLloydKMeans,
elki.clustering.hierarchical.birch.CFTree,
elki.clustering.hierarchical.birch.DiameterCriterion,
elki.clustering.hierarchical.birch.RadiusCriterion,
elki.index.tree.betula.CFTree,
elki.index.tree.betula.distance.BIRCHRadiusDistance
T. Zhang, R. Ramakrishnan, M. Livny
BIRCH: An Efficient Data Clustering Method for Very Large Databases
In: Proc. 1996 ACM SIGMOD International Conference on Management of Data
DOI:10.1145/233269.233324
DBLP:conf/sigmod/ZhangRL96

elki.clustering.hierarchical.CLINK
D. Defays
An Efficient Algorithm for the Complete Link Cluster Method
In: The Computer Journal 20.4
DOI:10.1093/comjnl/20.4.364
DBLP:journals/cj/Defays77

elki.clustering.hierarchical.extraction.ClustersWithNoiseExtraction
Erich Schubert, Michael Gertz
Semantic Word Clouds with Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding
In: ArXiV preprint, 1708.03569
Online: http://arxiv.org/abs/1708.03569
DBLP:journals/corr/abs-1708-03569

elki.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction,
elki.outlier.clustering.GLOSH
R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander
Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection
In: ACM Trans. Knowl. Discov. Data 10(1)
DOI:10.1145/2733381
DBLP:journals/tkdd/CampelloMZS15

elki.clustering.hierarchical.HACAM
Erich Schubert
HACAM: Hierarchical Agglomerative Clustering Around Medoids - and its Limitations
In: Proc. Conf. "Lernen, Wissen, Daten, Analysen", LWDA
Online: http://ceur-ws.org/Vol-2993/paper-19.pdf
DBLP:conf/lwa/Schubert21

elki.clustering.hierarchical.LinearMemoryNNChain
F. Murtagh
Multidimensional Clustering Algorithms
In: Multidimensional Clustering Algorithms
Online: http://www.multiresolutions.com/strule/MClA/

elki.clustering.hierarchical.linkage.CentroidLinkage,
elki.clustering.hierarchical.linkage.MedianLinkage
J. C. Gower
A comparison of some methods of cluster analysis
In: Biometrics (1967)
DOI:10.2307/2528417

elki.clustering.hierarchical.linkage.CompleteLinkage,
elki.clustering.hierarchical.linkage.FlexibleBetaLinkage,
elki.clustering.hierarchical.linkage.Linkage
G. N. Lance, W. T. Williams
A general theory of classificatory sorting strategies 1. Hierarchical systems
In: The Computer Journal 9.4
DOI:10.1093/comjnl/9.4.373

elki.clustering.hierarchical.linkage.CompleteLinkage,
elki.distance.BrayCurtisDistance
T. Sørensen
A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
In: Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 5(4)

elki.clustering.hierarchical.linkage.CompleteLinkage
S. C. Johnson
Hierarchical clustering schemes
In: Psychometrika 32
DOI:10.1007/BF02289588

elki.clustering.hierarchical.linkage.CompleteLinkage
P. Macnaughton-Smith
Some statistical and other numerical techniques for classifying individuals
In: Home Office Res. Rpt. No. 6, H.M.S.O., London

elki.clustering.hierarchical.linkage.GroupAverageLinkage,
elki.clustering.hierarchical.linkage.WeightedAverageLinkage
R. R. Sokal, C. D. Michener
A statistical method for evaluating systematic relationship
In: University of Kansas science bulletin 28
Online: https://archive.org/details/cbarchive_33927_astatisticalmethodforevaluatin1902

elki.clustering.hierarchical.linkage.MinimumVarianceLinkage
E. Diday, J. Lemaire, J. Pouget, F. Testu
Elements d'analyse de donnees

elki.clustering.hierarchical.linkage.MinimumVarianceLinkage
J. Podani
New Combinatorial Clustering Methods
In: Vegetatio 81(1/2)
DOI:10.1007/978-94-009-2432-1_5

elki.clustering.hierarchical.linkage.SingleLinkage
K. Florek, J. Łukaszewicz, J. Perkal, H. Steinhaus, S. Zubrzycki
Sur la liaison et la division des points d'un ensemble fini
In: Colloquium Mathematicae 2(3-4)

elki.clustering.hierarchical.linkage.WardLinkage
D. Wishart
256. Note: An Algorithm for Hierarchical Classifications
In: Biometrics 25(1)
DOI:10.2307/2528688

elki.clustering.hierarchical.linkage.WardLinkage
J. H. Ward Jr.
Hierarchical grouping to optimize an objective function
In: Journal of the American statistical association 58.301
DOI:10.1080/01621459.1963.10500845

elki.clustering.hierarchical.MedoidLinkage
S. Miyamoto, Y. Kaizu, Y. Endo
Hierarchical and non-hierarchical medoid clustering using asymmetric similarity measures
In: Soft Computing and Intelligent Systems (SCIS) and Int. Symp. Advanced Intelligent Systems (ISIS)
DOI:10.1109/SCIS-ISIS.2016.0091
DBLP:conf/scisisis/MiyamotoKE16

elki.clustering.hierarchical.MedoidLinkage
D. Herr, Q. Han, S. Lohmann, T. Ertl
Visual clutter reduction through hierarchy-based projection of high-dimensional labeled data
In: Graphics Interface Conference
DOI:10.20380/GI2016.14
DBLP:conf/graphicsinterface/HerrHLE16

elki.clustering.hierarchical.MiniMax
S. I. Ao, K. Yip, M. Ng, D. Cheung, P.-Y. Fong, I. Melhado, P. C. Sham
CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs
In: Bioinformatics, 21 (8)
DOI:10.1093/bioinformatics/bti201
DBLP:journals/bioinformatics/AoYNCFMS05

elki.clustering.hierarchical.MiniMax
J. Bien, R. Tibshirani
Hierarchical Clustering with Prototypes via Minimax Linkage
In: Journal of the American Statistical Association 106(495)
DOI:10.1198/jasa.2011.tm10183

elki.clustering.hierarchical.MiniMaxNNChain,
elki.clustering.hierarchical.NNChain
F. Murtagh
A survey of recent advances in hierarchical clustering algorithms
In: The Computer Journal 26(4)
DOI:10.1093/comjnl/26.4.354
DBLP:journals/cj/Murtagh83

elki.clustering.hierarchical.MiniMaxNNChain,
elki.clustering.hierarchical.NNChain
D. Müllner
Modern hierarchical, agglomerative clustering algorithms
In: arXiv preprint arXiv:1109.2378
Online: https://arxiv.org/abs/1109.2378
DBLP:journals/corr/abs-1109-2378

elki.clustering.hierarchical.OPTICSToHierarchical
Jörg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, Alex Kovarsky
Automatic Extraction of Clusters from Hierarchical Clustering Representations
In: 7th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, PAKDD
DOI:10.1007/3-540-36175-8_8
DBLP:conf/pakdd/SanderQLNK03

elki.clustering.hierarchical.SLINK
R. Sibson
SLINK: An optimally efficient algorithm for the single-link cluster method
In: The Computer Journal 16 (1)
DOI:10.1093/comjnl/16.1.30
DBLP:journals/cj/Sibson73

elki.clustering.kcenter.GreedyKCenter
D. S. Hochbaum, D. B. Shmoys
A unified approach to approximation algorithms for bottleneck problems
In: Journal of the ACM, 33 (3), 1986
DOI:10.1145/5925.5933
DBLP:journals/jacm/HochbaumS86

elki.clustering.kcenter.GreedyKCenter
T. F. Gonzalez
Clustering to Minimize the Maximum Intercluster Distance
In: Theoretical Computer Science, 38
DOI:10.1016/0304-3975(85)90224-5
DBLP:journals/tcs/Gonzalez85

elki.clustering.kmeans.AnnulusKMeans
G. Hamerly and J. Drake
Accelerating Lloyd’s Algorithm for k-Means Clustering
In: Partitional Clustering Algorithms
DOI:10.1007/978-3-319-09259-1_2

elki.clustering.kmeans.AnnulusKMeans
J. Drake
Faster k-means clustering
In: Faster k-means clustering
Online: http://hdl.handle.net/2104/8826

elki.clustering.kmeans.BisectingKMeans,
elki.evaluation.clustering.SetMatchingPurity
M. Steinbach, G. Karypis, V. Kumar
A Comparison of Document Clustering Techniques
In: KDD workshop on text mining. Vol. 400. No. 1
Online: http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf

elki.clustering.kmeans.CompareMeans,
elki.clustering.kmeans.SortMeans
S. J. Phillips
Acceleration of k-means and related clustering algorithms
In: Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002)
DOI:10.1007/3-540-45643-0_13
DBLP:conf/alenex/Phillips02

elki.clustering.kmeans.ElkanKMeans
C. Elkan
Using the triangle inequality to accelerate k-means
In: Proc. 20th International Conference on Machine Learning, ICML 2003
Online: http://www.aaai.org/Library/ICML/2003/icml03-022.php
DBLP:conf/icml/Elkan03

elki.clustering.kmeans.ExponionKMeans,
elki.clustering.kmeans.SimplifiedElkanKMeans
J. Newling
Fast k-means with accurate bounds
In: Proc. 33nd Int. Conf. on Machine Learning, ICML 2016
Online: http://jmlr.org/proceedings/papers/v48/newling16.html
DBLP:conf/icml/NewlingF16

elki.clustering.kmeans.FuzzyCMeans
J. C. Dunn
A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters
In: Journal of Cybernetics 3(3)
DOI:10.1080/01969727308546046

elki.clustering.kmeans.FuzzyCMeans
J. Bezdek
Pattern Recognition With Fuzzy Objective Function Algorithms
In: Pattern Recognition With Fuzzy Objective Function Algorithms
DOI:10.1007/978-1-4757-0450-1
DBLP:books/sp/Bezdek81

elki.clustering.kmeans.GMeans
G. Hamerly and C. Elkan
Learning the k in k-means
In: Neural Information Processing Systems
Online: https://papers.nips.cc/paper_files/paper/2003/hash/234833147b97bb6aed53a8f4f1c7a7d8-Abstract.html
DBLP:conf/nips/HamerlyE03

elki.clustering.kmeans.HamerlyKMeans
G. Hamerly
Making k-means even faster
In: Proc. 2010 SIAM International Conference on Data Mining
DOI:10.1137/1.9781611972801.12
DBLP:conf/sdm/Hamerly10

elki.clustering.kmeans.HartiganWongKMeans
J. A. Hartigan, M. A. Wong
Algorithm AS 136: A K-Means Clustering Algorithm
In: J. Royal Statistical Society. Series C (Applied Statistics) 28(1)
DOI:10.2307/2346830

elki.clustering.kmeans.initialization.AFKMC2
O. Bachem, M. Lucic, S. H. Hassani, A. Krause
Fast and Provably Good Seedings for k-Means
In: Neural Information Processing Systems 2016
Online: https://proceedings.neurips.cc/paper/2016/hash/d67d8ab4f4c10bf22aa353e27879133c-Abstract.html
DBLP:conf/nips/BachemLH016

elki.clustering.kmeans.initialization.FirstK,
elki.clustering.kmeans.MacQueenKMeans
J. MacQueen
Some Methods for Classification and Analysis of Multivariate Observations
In: 5th Berkeley Symp. Math. Statist. Prob.
Online: http://projecteuclid.org/euclid.bsmsp/1200512992

elki.clustering.kmeans.initialization.KMC2
O. Bachem, M. Lucic, S. H. Hassani, A. Krause
Approximate K-Means++ in Sublinear Time
In: Proc. 30th AAAI Conference on Artificial Intelligence
Online: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12147
DBLP:conf/aaai/BachemLHK16

elki.clustering.kmeans.initialization.KMeansPlusPlus
D. Arthur, S. Vassilvitskii
k-means++: the advantages of careful seeding
In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007)
Online: http://dl.acm.org/citation.cfm?id=1283383.1283494
DBLP:conf/soda/ArthurV07

elki.clustering.kmeans.initialization.Ostrovsky
R. Ostrovsky, Y. Rabani, L. J. Schulman, C. Swamy
The effectiveness of Lloyd-type methods for the k-means problem
In: Journal of the ACM 59(6)
DOI:10.1145/2395116.2395117
DBLP:journals/jacm/OstrovskyRSS12

elki.clustering.kmeans.initialization.Ostrovsky
R. Ostrovsky, Y. Rabani, L. J. Schulman, C. Swamy
The effectiveness of Lloyd-type methods for the k-means problem
In: Symposium on Foundations of Computer Science (FOCS)
DOI:10.1109/FOCS.2006.75
DBLP:conf/focs/OstrovskyRSS06

elki.clustering.kmeans.initialization.RandomlyChosen,
elki.clustering.kmeans.LloydKMeans
E. W. Forgy
Cluster analysis of multivariate data: efficiency versus interpretability of classifications
In: Biometrics 21(3)

elki.clustering.kmeans.initialization.RandomlyChosen
D. J. McRae
MIKCA: A FORTRAN IV Iterative K-Means Cluster Analysis Program
In: Behavioral Science 16(4)

elki.clustering.kmeans.initialization.RandomlyChosen
M. R. Anderberg
Nonhierarchical Clustering Methods
In: Cluster Analysis for Applications

elki.clustering.kmeans.initialization.RandomNormalGenerated,
elki.clustering.kmeans.initialization.RandomUniformGenerated
R. C. Jancey
Multidimensional group analysis
In: Australian Journal of Botany 14(1)
DOI:10.1071/BT9660127

elki.clustering.kmeans.initialization.SampleKMeans
P. S. Bradley, U. M. Fayyad
Refining Initial Points for K-Means Clustering
In: Proc. 15th Int. Conf. on Machine Learning (ICML 1998)
DBLP:conf/icml/BradleyF98

elki.clustering.kmeans.initialization.SphericalAFKMC2
R. Pratap, A. A. Deshmukh, P. Nair, T. Dutt
A Faster Sampling Algorithm for Spherical k-means
In: Proc. 10th Asian Conference on Machine Learning, ACML
Online: http://proceedings.mlr.press/v95/pratap18a.html
DBLP:conf/acml/PratapDND18

elki.clustering.kmeans.initialization.SphericalKMeansPlusPlus
Y. Endo and S. Miyamoto
Spherical k-Means++ Clustering
In: Modeling Decisions for Artificial Intelligence
DOI:10.1007/978-3-319-23240-9_9
DBLP:conf/mdai/EndoM15

elki.clustering.kmeans.KDTreeFilteringKMeans
D. Pelleg, A. Moore
Accelerating Exact k-means Algorithms with Geometric Reasoning
In: Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
DOI:10.1145/312129.312248
DBLP:conf/kdd/PellegM99

elki.clustering.kmeans.KDTreeFilteringKMeans
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu
An Efficient k-Means Clustering Algorithm: Analysis and Implementation
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7)
DOI:10.1109/TPAMI.2002.1017616
DBLP:journals/pami/KanungoMNPSW02

elki.clustering.kmeans.KDTreeFilteringKMeans
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu
Computing Nearest Neighbors for Moving Points and Applications to Clustering
In: Proc. 10th ACM-SIAM Symposium on Discrete Algorithms (SODA'99)
Online: http://dl.acm.org/citation.cfm?id=314500.315095
DBLP:conf/soda/KanungoMNPSW99

elki.clustering.kmeans.KDTreePruningKMeans
K. Alsabti, S. Ranka, V. Singh
An efficient k-means clustering algorithm
In: Electrical Engineering and Computer Science, Technical Report 43
Online: https://surface.syr.edu/eecs/43/

elki.clustering.kmeans.KDTreePruningKMeans
K. Alsabti, S. Ranka, V. Singh
An Efficient Space-Partitioning Based Algorithm for the K-Means Clustering
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining
DOI:10.1007/3-540-48912-6_47
DBLP:conf/pakdd/AlsabtiRS99

elki.clustering.kmeans.KMeansMinusMinus,
elki.outlier.clustering.KMeansMinusMinusOutlierDetection
S. Chawla, A. Gionis
k-means--: A Unified Approach to Clustering and Outlier Detection
In: Proc. 13th SIAM Int. Conf. on Data Mining (SDM 2013)
DOI:10.1137/1.9781611972832.21
DBLP:conf/sdm/ChawlaG13

elki.clustering.kmeans.KMediansLloyd
P. S. Bradley, O. L. Mangasarian, W. N. Street
Clustering via Concave Minimization
In: Advances in Neural Information Processing Systems
Online: https://papers.nips.cc/paper/1260-clustering-via-concave-minimization
DBLP:conf/nips/BradleyMS96

elki.clustering.kmeans.LloydKMeans
S. Lloyd
Least squares quantization in PCM
In: IEEE Transactions on Information Theory 28 (2): 129–137.
DOI:10.1109/TIT.1982.1056489
DBLP:journals/tit/Lloyd82

elki.clustering.kmeans.quality.AbstractKMeansQualityMeasure
A. Foglia, B. Hancock
Notes on Bayesian Information Criterion Calculation for X-Means Clustering
Online: https://github.com/bobhancock/goxmeans/blob/master/doc/BIC_notes.pdf

elki.clustering.kmeans.quality.AkaikeInformationCriterion
H. Akaike
Information Theory and an Extension of the Maximum Likelihood Principle
In: Second International Symposium on Information Theory

elki.clustering.kmeans.quality.AkaikeInformationCriterion,
elki.clustering.kmeans.quality.AkaikeInformationCriterionXMeans,
elki.clustering.kmeans.quality.BayesianInformationCriterionXMeans,
elki.clustering.kmeans.XMeans
D. Pelleg, A. Moore
X-means: Extending K-means with Efficient Estimation on the Number of Clusters
In: Proc. 17th Int. Conf. on Machine Learning (ICML 2000)
Online: http://www.pelleg.org/shared/hp/download/xmeans.ps
DBLP:conf/icml/PellegM00

elki.clustering.kmeans.quality.BayesianInformationCriterion
G. Schwarz
Estimating the dimension of a model
In: The annals of statistics 6.2
DOI:10.1214/aos/1176344136

elki.clustering.kmeans.quality.BayesianInformationCriterionZhao
Q. Zhao, M. Xu, P. Fränti
Knee Point Detection on Bayesian Information Criterion
In: 20th IEEE International Conference on Tools with Artificial Intelligence
DOI:10.1109/ICTAI.2008.154
DBLP:conf/ictai/ZhaoXF08

elki.clustering.kmeans.ShallotKMeans
C. Borgelt
Even Faster Exact k-Means Clustering
In: Proc. 18th Int. Symp. Intelligent Data Analysis (IDA)
DOI:10.1007/978-3-030-44584-3_8
DBLP:conf/ida/Borgelt20

elki.clustering.kmeans.spherical.EuclideanSphericalElkanKMeans,
elki.clustering.kmeans.spherical.EuclideanSphericalHamerlyKMeans,
elki.clustering.kmeans.spherical.EuclideanSphericalSimplifiedElkanKMeans,
elki.clustering.kmeans.spherical.SphericalElkanKMeans,
elki.clustering.kmeans.spherical.SphericalHamerlyKMeans,
elki.clustering.kmeans.spherical.SphericalSimplifiedElkanKMeans,
elki.clustering.kmeans.spherical.SphericalSimplifiedHamerlyKMeans
Erich Schubert, Andreas Lang, Gloria Feher
Accelerating Spherical k-Means
In: Int. Conf. on Similarity Search and Applications, SISAP 2021
DOI:10.1007/978-3-030-89657-7_17
DBLP:conf/sisap/SchubertLF21

elki.clustering.kmeans.spherical.SphericalElkanKMeans,
elki.clustering.kmeans.spherical.SphericalHamerlyKMeans,
elki.clustering.kmeans.spherical.SphericalSimplifiedElkanKMeans,
elki.clustering.kmeans.spherical.SphericalSimplifiedHamerlyKMeans
Erich Schubert
A Triangle Inequality for Cosine Similarity
In: Int. Conf. on Similarity Search and Applications, SISAP 2021
DOI:10.1007/978-3-030-89657-7_3
DBLP:conf/sisap/Schubert21

elki.clustering.kmeans.spherical.SphericalKMeans
I. S. Dhillon, D. S. Modha
Concept Decompositions for Large Sparse Text Data Using Clustering
In: Machine Learning 42
DOI:10.1023/A:1007612920971
DBLP:journals/ml/DhillonM01

elki.clustering.kmeans.YinYangKMeans
Y. Ding, Y. Zhao, X. Shen, M, Musuvathi, T. Mytkowicz
Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup
In: Proc. International Conference on Machine Learning (ICML 2015)
Online: http://proceedings.mlr.press/v37/ding15.html
DBLP:conf/icml/DingZSMM15

elki.clustering.kmedoids.AlternatingKMedoids,
elki.clustering.kmedoids.initialization.ParkJun
H.-S. Park, C.-H. Jun
A simple and fast algorithm for K-medoids clustering
In: Expert Systems with Applications 36(2)
DOI:10.1016/j.eswa.2008.01.039
DBLP:journals/eswa/ParkJ09

elki.clustering.kmedoids.AlternatingKMedoids,
elki.clustering.kmedoids.ReynoldsPAM
A. P. Reynolds, G. Richards, B. de la Iglesia, V. J. Rayward-Smith
Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms
In: J. Math. Model. Algorithms 5(4)
DOI:10.1007/s10852-005-9022-1
DBLP:journals/jmma/ReynoldsRIR06

elki.clustering.kmedoids.AlternatingKMedoids,
elki.clustering.kmedoids.initialization.AlternateRefinement
F. E. Maranzana
On the location of supply points to minimize transport costs
In: Journal of the Operational Research Society 15.3
DOI:10.1057/jors.1964.47

elki.clustering.kmedoids.CLARA
L. Kaufman, P. J. Rousseeuw
Clustering Large Applications (Program CLARA)
In: Finding Groups in Data: An Introduction to Cluster Analysis
DOI:10.1002/9780470316801.ch3

elki.clustering.kmedoids.CLARA
L. Kaufman, P. J. Rousseeuw
Clustering Large Data Sets
In: Pattern Recognition in Practice
DOI:10.1016/B978-0-444-87877-9.50039-X

elki.clustering.kmedoids.CLARANS
R. T. Ng, J. Han
CLARANS: a method for clustering objects for spatial data mining
In: IEEE Transactions on Knowledge and Data Engineering 14(5)
DOI:10.1109/TKDE.2002.1033770
DBLP:journals/tkde/NgH02

elki.clustering.kmedoids.EagerPAM,
elki.clustering.kmedoids.initialization.BUILD,
elki.clustering.kmedoids.PAM
R. A. Whitaker
A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems
In: INFOR: Information Systems and Operational Research 21(2)
DOI:10.1080/03155986.1983.11731889

elki.clustering.kmedoids.EagerPAM
V. Estivill-Castro and A. T. Murray
Discovering Associations in Spatial Data - An Efficient Medoid Based Approach
In: Proc. 2nd Pacific-Asia Conf. on Research and Development in Knowledge Discovery and Data Mining, PAKDD-98
DOI:10.1007/3-540-64383-4_10
DBLP:conf/pakdd/Estivill-CastroM98

elki.clustering.kmedoids.FastCLARA,
elki.clustering.kmedoids.FastCLARANS,
elki.clustering.kmedoids.FastPAM,
elki.clustering.kmedoids.FastPAM1,
elki.clustering.kmedoids.initialization.LAB
Erich Schubert, Peter J. Rousseeuw
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
In: Proc. 12th Int. Conf. Similarity Search and Applications (SISAP'2019)
DOI:10.1007/978-3-030-32047-8_16
DBLP:conf/sisap/SchubertR19

elki.clustering.kmedoids.FasterCLARA,
elki.clustering.kmedoids.FasterPAM
Erich Schubert and Peter J. Rousseeuw
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
In: Information Systems 101
DOI:10.1016/j.is.2021.101804
DBLP:journals/is/SchubertR21

elki.clustering.kmedoids.initialization.AlternateRefinement,
elki.clustering.kmedoids.initialization.GreedyG
M. Eugénia Captivo
Fast primal and dual heuristics for the p-median location problem
In: European Journal of Operational Research 52(1)
DOI:10.1016/0377-2217(91)90336-T

elki.clustering.kmedoids.initialization.BUILD,
elki.clustering.kmedoids.PAM
L. Kaufman, P. J. Rousseeuw
Clustering by means of Medoids
In: Statistical Data Analysis Based on the L1-Norm and Related Methods

elki.clustering.kmedoids.initialization.BUILD,
elki.clustering.kmedoids.PAM
L. Kaufman, P. J. Rousseeuw
Partitioning Around Medoids (Program PAM)
In: Finding Groups in Data: An Introduction to Cluster Analysis
DOI:10.1002/9780470316801.ch2

elki.clustering.Leader
J. A. Hartigan
Chapter 3: Quick Partition Algorithms, 3.2 Leader Algorithm
In: Clustering algorithms
Online: http://dl.acm.org/citation.cfm?id=540298

elki.clustering.NaiveMeanShiftClustering
Y. Cheng
Mean shift, mode seeking, and clustering
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8
DOI:10.1109/34.400568
DBLP:journals/pami/Cheng95

elki.clustering.optics.AbstractOPTICS,
elki.clustering.optics.OPTICSHeap,
elki.clustering.optics.OPTICSList,
elki.clustering.optics.OPTICSXi
Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander
OPTICS: Ordering Points to Identify the Clustering Structure
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99)
DOI:10.1145/304181.304187
DBLP:conf/sigmod/AnkerstBKS99

elki.clustering.optics.DeLiClu
Elke Achtert, Christian Böhm, Peer Kröger
DeLiClu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair Ranking
In: Proc. 10th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 2006)
DOI:10.1007/11731139_16
DBLP:conf/pakdd/AchtertBK06

elki.clustering.optics.FastOPTICS,
elki.index.preprocessed.fastoptics.RandomProjectedNeighborsAndDensities
J. Schneider, M. Vlachos
Fast parameterless density-based clustering via random projections
In: Proc. 22nd ACM Int. Conf. on Information & Knowledge Management (CIKM 2013)
DOI:10.1145/2505515.2505590
DBLP:conf/cikm/SchneiderV13

elki.clustering.optics.OPTICSXi
Erich Schubert, Michael Gertz
Improving the Cluster Structure Extracted from OPTICS Plots
In: Proc. Lernen, Wissen, Daten, Analysen (LWDA 2018)
Online: http://ceur-ws.org/Vol-2191/paper37.pdf
DBLP:conf/lwa/SchubertG18

elki.clustering.silhouette.FasterMSC,
elki.clustering.silhouette.FastMSC,
elki.clustering.silhouette.PAMMEDSIL,
elki.clustering.silhouette.PAMSIL
Lars Lenssen and Erich Schubert
Clustering by Direct Optimization of the Medoid Silhouette
In: Int. Conf. on Similarity Search and Applications, SISAP 2022
DOI:10.1007/978-3-031-17849-8_15
DBLP:conf/sisap/LenssenS22

elki.clustering.silhouette.PAMMEDSIL,
elki.clustering.silhouette.PAMSIL
M. Van der Laan, K. Pollard, J. Bryan
A new partitioning around medoids algorithm
In: Journal of Statistical Computation and Simulation 73(8)
DOI:10.1080/0094965031000136012

elki.clustering.SNNClustering
L. Ertöz, M. Steinbach, V. Kumar
Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data
In: Proc. of SIAM Data Mining (SDM'03)
DOI:10.1137/1.9781611972733.5
DBLP:conf/sdm/ErtozSK03

elki.clustering.subspace.CLIQUE
R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
In: Proc. SIGMOD Conference, Seattle, WA, 1998
DOI:10.1145/276304.276314
DBLP:conf/sigmod/AgrawalGGR98

elki.clustering.subspace.DiSH
E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, A. Zimek
Detection and Visualization of Subspace Cluster Hierarchies
In: Proc. 12th Int. Conf. on Database Systems for Advanced Applications (DASFAA)
DOI:10.1007/978-3-540-71703-4_15
DBLP:conf/dasfaa/AchtertBKKMZ07

elki.clustering.subspace.DOC,
elki.clustering.subspace.FastDOC
C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali
A Monte Carlo algorithm for fast projective clustering
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '02)
DOI:10.1145/564691.564739
DBLP:conf/sigmod/ProcopiucJAM02

elki.clustering.subspace.HiSC
Elke Achtert, Christian Böhm, Hans-Petre Kriegel, Peer Kröger, Ina Müller-Gorman, Arthur Zimek
Finding Hierarchies of Subspace Clusters
In: Proc. 10th Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD'06)
DOI:10.1007/11871637_42
DBLP:conf/pkdd/AchtertBKKMZ06

elki.clustering.subspace.P3C
Gabriela Moise, Jörg Sander, Martin Ester
P3C: A Robust Projected Clustering Algorithm
In: Proc. Sixth International Conference on Data Mining (ICDM '06)
DOI:10.1109/ICDM.2006.123
DBLP:conf/icdm/MoiseSE06

elki.clustering.subspace.PROCLUS
C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, J. S. Park
Fast Algorithms for Projected Clustering
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99)
DOI:10.1145/304181.304188

elki.clustering.subspace.SUBCLU
Karin Kailing, Hans-Peter Kriegel, Peer Kröger
Density Connected Subspace Clustering for High Dimensional Data
In: Proc. SIAM Int. Conf. on Data Mining (SDM'04)
DOI:10.1137/1.9781611972740.23
DBLP:conf/sdm/KroegerKK04

elki.clustering.svm.SupportVectorClustering
A. Ben-Hur, H. T. Siegelmann, D. Horn, V. Vapnik
A Support Vector Clustering Method
In: International Conference on Pattern Recognition (ICPR)
DOI:10.1109/ICPR.2000.906177
DBLP:conf/icpr/Ben-HurSHV00

elki.clustering.svm.SupportVectorClustering
A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik
A Support Vector Method for Clustering
In: Neural Information Processing Systems
Online: https://proceedings.neurips.cc/paper/2000/hash/14cfdb59b5bda1fc245aadae15b1984a-Abstract.html
DBLP:conf/nips/Ben-HurHSV00

elki.clustering.svm.SupportVectorClustering
A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik
Support Vector Clustering
In: Journal of Machine Learning Research
Online: http://jmlr.org/papers/v2/horn01a.html
DBLP:journals/jmlr/Ben-HurHSV01

elki.clustering.uncertain.CenterOfMassMetaClustering
Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid, Arthur Zimek
A Framework for Clustering Uncertain Data
In: Proceedings of the VLDB Endowment, 8(12)
Online: http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf
DBLP:journals/pvldb/SchubertKEZSZ15

elki.clustering.uncertain.CKMeans
S. D. Lee, B. Kao, R. Cheng
Reducing UK-means to K-means
In: ICDM Data Mining Workshops, 2007
DOI:10.1109/ICDMW.2007.40
DBLP:conf/icdm/LeeKC07

elki.clustering.uncertain.FDBSCAN,
elki.clustering.uncertain.FDBSCANNeighborPredicate
Hans-Peter Kriegel, Martin Pfeifle
Density-based clustering of uncertain data
In: Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)
DOI:10.1145/1081870.1081955
DBLP:conf/kdd/KriegelP05

elki.clustering.uncertain.RepresentativeUncertainClustering
Andreas Züfle, Tobias Emrich, Klaus Arthur Schmid, Nikos Mamoulis, Arthur Zimek, Mathias Renz
Representative clustering of uncertain data
In: Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
DOI:10.1145/2623330.2623725
DBLP:conf/kdd/ZufleESMZR14

elki.clustering.uncertain.UKMeans
M. Chau, R. Cheng, B. Kao, J. Ng
Uncertain data mining: An example in clustering location data
In: Proc. 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006)
DOI:10.1007/11731139_24
DBLP:conf/pakdd/ChauCKN06

elki.data.projection.random.AchlioptasRandomProjectionFamily
D. Achlioptas
Database-friendly random projections: Johnson-Lindenstrauss with binary coins
In: Proc. 20th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
DOI:10.1145/375551.375608
DBLP:conf/pods/Achlioptas01

elki.data.projection.random.CauchyRandomProjectionFamily,
elki.data.projection.random.GaussianRandomProjectionFamily,
elki.index.lsh.hashfamilies.EuclideanHashFunctionFamily,
elki.index.lsh.hashfamilies.ManhattanHashFunctionFamily,
elki.index.lsh.hashfunctions.MultipleProjectionsLocalitySensitiveHashFunction
M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni
Locality-sensitive hashing scheme based on p-stable distributions
In: Proc. 20th Annual Symposium on Computational Geometry
DOI:10.1145/997817.997857
DBLP:conf/compgeom/DatarIIM04

elki.data.projection.random.RandomSubsetProjectionFamily
L. Breiman
Bagging predictors
In: Machine learning 24.2
DOI:10.1007/BF00058655
DBLP:journals/ml/Breiman96b

elki.data.projection.random.SimplifiedRandomHyperplaneProjectionFamily,
elki.index.lsh.hashfamilies.CosineHashFunctionFamily
M. Henzinger
Finding near-duplicate web pages: a large-scale evaluation of algorithms
In: Proc. 29th ACM Conf. Research and Development in Information Retrieval (SIGIR 2006)
DOI:10.1145/1148170.1148222
DBLP:conf/sigir/Henzinger06

elki.data.uncertain.UnweightedDiscreteUncertainObject,
elki.data.uncertain.WeightedDiscreteUncertainObject
N. Dalvi, C. Ré, D. Suciu
Probabilistic databases: diamonds in the dirt
In: Communications of the ACM 52, 7
DOI:10.1145/1538788.1538810
DBLP:journals/cacm/DalviRS09

elki.data.uncertain.UnweightedDiscreteUncertainObject,
elki.data.uncertain.WeightedDiscreteUncertainObject
O. Benjelloun, A. D. Sarma, A. Halevy, J. Widom
ULDBs: Databases with uncertainty and lineage
In: Proc. of the 32nd Int. Conf. on Very Large Data Bases (VLDB)
Online: http://www.vldb.org/conf/2006/p953-benjelloun.pdf
DBLP:conf/vldb/BenjellounSHW06

elki.data.uncertain.WeightedDiscreteUncertainObject
Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, Andreas Züfle
Probabilistic frequent itemset mining in uncertain databases
In: Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
DOI:10.1145/1557019.1557039
DBLP:conf/kdd/BerneckerKRVZ09

elki.database.ids.integer.IntegerDBIDArrayQuickSort,
elki.utilities.datastructures.arrays.IntegerArrayQuickSort
V. Yaroslavskiy
Dual-Pivot Quicksort
Online: http://iaroslavski.narod.ru/quicksort/

elki.datasource.filter.transform.LinearDiscriminantAnalysisFilter
R. A. Fisher
The use of multiple measurements in taxonomic problems
In: Annals of Eugenics 7.2
DOI:10.1111/j.1469-1809.1936.tb02137.x

elki.datasource.filter.transform.PerturbationFilter
A. Zimek, R. J. G. B. Campello, J. Sander
Data Perturbation for Outlier Detection Ensembles
In: Proc. 26th International Conference on Scientific and Statistical Database Management (SSDBM), Aalborg, Denmark, 2014
DOI:10.1145/2618243.2618257
DBLP:conf/ssdbm/ZimekCS14

elki.distance.BrayCurtisDistance
J. R. Bray, J. T. Curtis
An ordination of the upland forest communities of southern Wisconsin
In: Ecological monographs 27.4
DOI:10.2307/1942268

elki.distance.BrayCurtisDistance
L. R. Dice
Measures of the Amount of Ecologic Association Between Species
In: Ecology 26 (3)
DOI:10.2307/1932409

elki.distance.CanberraDistance
G. N. Lance, W. T. Williams
Computer Programs for Hierarchical Polythetic Classification (Similarity Analyses)
In: Computer Journal, Volume 9, Issue 1
DOI:10.1093/comjnl/9.1.60

elki.distance.ClarkDistance,
elki.distance.probabilistic.FisherRaoDistance,
elki.distance.probabilistic.HellingerDistance,
elki.distance.probabilistic.JensenShannonDivergenceDistance,
elki.similarity.Kulczynski1Similarity,
elki.similarity.Kulczynski2Similarity
M.-M. Deza, E. Deza
Dictionary of distances
In: Dictionary of distances
DOI:10.1007/978-3-642-00234-2

elki.distance.colorhistogram.HistogramIntersectionDistance
M. J. Swain, D. H. Ballard
Color Indexing
In: International Journal of Computer Vision, 7(1), 32, 1991
DOI:10.1007/BF00130487
DBLP:journals/ijcv/SwainB91

elki.distance.colorhistogram.HSBHistogramQuadraticDistance
J. R. Smith, S. F. Chang
VisualSEEk: a fully automated content-based image query system
In: Proc. 4th ACM Int. Conf. on Multimedia 1997
DOI:10.1145/244130.244151
DBLP:conf/mm/SmithC96

elki.distance.colorhistogram.RGBHistogramQuadraticDistance
J. Hafner, H. S. Sawhney, W. Equits, M. Flickner, W. Niblack
Efficient Color Histogram Indexing for Quadratic Form Distance Functions
In: IEEE Trans. on Pattern Analysis and Machine Intelligence 17(7)
DOI:10.1109/34.391417
DBLP:journals/pami/HafnerSEFN95

elki.distance.histogram.HistogramMatchDistance
L. N. Vaserstein
Markov processes over denumerable products of spaces describing large systems of automata
In: Problemy Peredachi Informatsii 5.3 / Problems of Information Transmission, 5:3
Online: http://mi.mathnet.ru/eng/ppi1811

elki.distance.MahalanobisDistance,
elki.math.linearalgebra.VMath
P. C. Mahalanobis
On the generalized distance in statistics
In: Proceedings of the National Institute of Sciences of India. 2 (1)

elki.distance.probabilistic.ChiDistance,
elki.distance.probabilistic.JeffreyDivergenceDistance,
elki.distance.probabilistic.JensenShannonDivergenceDistance,
elki.distance.probabilistic.SqrtJensenShannonDivergenceDistance
D. M. Endres, J. E. Schindelin
A new metric for probability distributions
In: IEEE Transactions on Information Theory 49(7)
DOI:10.1109/TIT.2003.813506
DBLP:journals/tit/EndresS03

elki.distance.probabilistic.ChiDistance,
elki.distance.probabilistic.ChiSquaredDistance,
elki.distance.probabilistic.JeffreyDivergenceDistance
J. Puzicha, J. M. Buhmann, Y. Rubner, C. Tomasi
Empirical evaluation of dissimilarity measures for color and texture
In: Proc. 7th IEEE International Conference on Computer Vision
DOI:10.1109/ICCV.1999.790412
DBLP:conf/iccv/PuzichaRTB99

elki.distance.probabilistic.FisherRaoDistance
C. R. Rao
Information and the Accuracy Attainable in the Estimation of Statistical Parameters
In: Bulletin of the Calcutta Mathematical Society 37(3)

elki.distance.probabilistic.HellingerDistance
E. Hellinger
Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen
In: Journal für die reine und angewandte Mathematik
Online: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002166941

elki.distance.probabilistic.JeffreyDivergenceDistance
H. Jeffreys
An invariant form for the prior probability in estimation problems
In: Proc. Royal Society A: Mathematical, Physical and Engineering Sciences 186(1007)
DOI:10.1098/rspa.1946.0056

elki.distance.probabilistic.JeffreyDivergenceDistance,
elki.distance.probabilistic.TriangularDiscriminationDistance
F. Topsøe
Some inequalities for information divergence and related measures of discrimination
In: IEEE Transactions on information theory, 46(4)
DOI:10.1109/18.850703
DBLP:journals/tit/Topsoe00

elki.distance.probabilistic.JensenShannonDivergenceDistance
J. Lin
Divergence measures based on the Shannon entropy
In: IEEE Transactions on Information Theory 37(1)
DOI:10.1109/18.61115
DBLP:journals/tit/Lin91

elki.distance.probabilistic.KullbackLeiblerDivergenceAsymmetricDistance,
elki.distance.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistance
S. Kullback
Information theory and statistics

elki.distance.probabilistic.TriangularDistance
R. Connor, F. A. Cardillo, L. Vadicamo, F. Rabitti
Hilbert Exclusion: Improved Metric Search through Finite Isometric Embeddings
In: ACM Trans. Inf. Syst.
DOI:10.1145/3001583
DBLP:journals/tois/ConnorCVR17

elki.distance.set.HammingDistance
R. W. Hamming
Error detecting and error correcting codes
In: Bell System technical journal, 29(2)
DOI:10.1002/j.1538-7305.1950.tb00463.x

elki.distance.set.JaccardSimilarityDistance,
elki.evaluation.clustering.PairCounting,
elki.similarity.cluster.ClusterJaccardSimilarity
P. Jaccard
Distribution de la florine alpine dans la Bassin de Dranses et dans quelques regiones voisines
In: Bulletin del la Société Vaudoise des Sciences Naturelles
Online: http://data.rero.ch/01-R241574160

elki.distance.strings.LevenshteinDistance,
elki.distance.strings.NormalizedLevenshteinDistance
V. I. Levenshtein
Binary codes capable of correcting deletions, insertions and reversals
In: Soviet physics doklady 10

elki.distance.timeseries.DerivativeDTWDistance
E. J. Keogh, M. J. Pazzani
Derivative dynamic time warping
In: 1st SIAM Int. Conf. on Data Mining (SDM-2001)
DOI:10.1137/1.9781611972719.1
DBLP:conf/sdm/KeoghP01

elki.distance.timeseries.DTWDistance
D. Berndt, J. Clifford
Using dynamic time warping to find patterns in time series
In: AAAI-94 Workshop on Knowledge Discovery in Databases, 1994
Online: http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
DBLP:conf/kdd/BerndtC94

elki.distance.timeseries.EDRDistance
L. Chen, M. T. Özsu, V. Oria
Robust and fast similarity search for moving object trajectories
In: Proc. 2005 ACM SIGMOD Int. Conf. Management of Data
DOI:10.1145/1066157.1066213
DBLP:conf/sigmod/ChenOO05

elki.distance.timeseries.ERPDistance
L. Chen, R. Ng
On the marriage of Lp-norms and edit distance
In: Proc. 13th Int. Conf. on Very Large Data Bases (VLDB '04)
Online: http://www.vldb.org/conf/2004/RS21P2.PDF
DBLP:conf/vldb/ChenN04

elki.distance.timeseries.LCSSDistance
M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh
Indexing Multi-Dimensional Time-Series with Support for Multiple Distance Measures
In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
DOI:10.1145/956750.956777
DBLP:conf/kdd/VlachosHGK03

elki.evaluation.clustering.BCubed
E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo
A comparison of extrinsic clustering evaluation metrics based on formal constraints
In: Information Retrieval 12(4)
DOI:10.1007/s10791-008-9066-8
DBLP:journals/ir/AmigoGAV09

elki.evaluation.clustering.BCubed,
elki.similarity.cluster.ClusteringBCubedF1Similarity
A. Bagga, B. Baldwin
Entity-based cross-document coreferencing using the Vector Space Model
In: Proc. 17th Int. Conf. on Computational Linguistics (COLING '98)
DOI:10.3115/980451.980859

elki.evaluation.clustering.EditDistance
P. Pantel, D. Lin
Document clustering with committees
In: Proc. 25th ACM SIGIR Conf. on Research and Development in Information Retrieval
DOI:10.1145/564376.564412
DBLP:conf/sigir/PantelL02

elki.evaluation.clustering.Entropy
A. Strehl, J. Ghosh
Cluster Ensembles -A Knowledge Reuse Framework for Combining Multiple Partitions
In: J. Mach. Learn. Res. 3
Online: http://jmlr.org/papers/v3/strehl02a.html
DBLP:journals/jmlr/StrehlG02

elki.evaluation.clustering.Entropy
M. Meilă
Comparing clusterings by the variation of information
In: Learning theory and kernel machines
DOI:10.1007/978-3-540-45167-9_14
DBLP:conf/colt/Meila03

elki.evaluation.clustering.Entropy
Tarald O. Kvålseth
Entropy and Correlation: Some Comments
In: IEEE Trans. Systems, Man, and Cybernetics 17(3)
DOI:10.1109/TSMC.1987.4309069
DBLP:journals/tsmc/Kvalseth87

elki.evaluation.clustering.Entropy
X. V. Nguyen, J. Epps, J. Bailey
Information theoretic measures for clusterings comparison: is a correction for chance necessary?
In: Proc. 26th Ann. Int. Conf. on Machine Learning (ICML '09)
DOI:10.1145/1553374.1553511
DBLP:conf/icml/NguyenEB09

elki.evaluation.clustering.Entropy
Y. Y. Yao
Information-Theoretic Measures for Knowledge Discovery and Data Mining
In: Entropy Measures, Maximum Entropy Principle and Emerging Applications
DOI:10.1007/978-3-540-36212-8_6

elki.evaluation.clustering.Entropy
S. Romano, J. Bailey, X. V. Nguyen, K. Verspoor
Standardized Mutual Information for Clustering Comparisons: One Step Further in Adjustment for Chance
In: Proc. 31th Int. Conf. on Machine Learning (ICML 2014)
Online: http://proceedings.mlr.press/v32/romano14.html
DBLP:conf/icml/RomanoBNV14

elki.evaluation.clustering.Entropy
A. Rosenberg, J. Hirschberg
V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure
In: EMNLP-CoNLL 2007
Online: https://www.aclweb.org/anthology/D07-1043/
DBLP:conf/emnlp/RosenbergH07

elki.evaluation.clustering.internal.CIndex
L. J. Hubert, J. R. Levin
A general statistical framework for assessing categorical clustering in free recall
In: Psychological Bulletin, Vol. 83(6)
DOI:10.1037/0033-2909.83.6.1072

elki.evaluation.clustering.internal.ConcordantPairsGammaTau
F. B. Baker, L. J. Hubert
Measuring the Power of Hierarchical Cluster Analysis
In: Journal of the American Statistical Association, 70(349)
DOI:10.1080/01621459.1975.10480256

elki.evaluation.clustering.internal.ConcordantPairsGammaTau
F. J. Rohlf
Methods of comparing classifications
In: Annual Review of Ecology and Systematics
DOI:10.1146/annurev.es.05.110174.000533

elki.evaluation.clustering.internal.DaviesBouldinIndex
D. L. Davies, D. W. Bouldin
A Cluster Separation Measure
In: IEEE Transactions Pattern Analysis and Machine Intelligence 1(2)
DOI:10.1109/TPAMI.1979.4766909
DBLP:journals/pami/DaviesB79

elki.evaluation.clustering.internal.DBCV
Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur Zimek, Jörg Sander
Density-Based Clustering Validation
In: Proc. 14th SIAM International Conference on Data Mining (SDM)
DOI:10.1137/1.9781611973440.96
DBLP:conf/sdm/MoulaviJCZS14

elki.evaluation.clustering.internal.PBMIndex
M. K. Pakhira, S. Bandyopadhyay, U. Maulik
Validity index for crisp and fuzzy clusters
In: Pattern recognition, 37(3)
DOI:10.1016/j.patcog.2003.06.005
DBLP:journals/pr/PakhiraBM04

elki.evaluation.clustering.internal.Silhouette,
elki.outlier.clustering.SilhouetteOutlierDetection
P. J. Rousseeuw
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
In: Journal of Computational and Applied Mathematics, Volume 20
DOI:10.1016/0377-0427(87)90125-7

elki.evaluation.clustering.internal.VarianceRatioCriterion
R. B. Calinski, J. Harabasz
A dendrite method for cluster analysis
In: Communications in Statistics - Theory and Methods 3(1)
DOI:10.1080/03610927408827101

elki.evaluation.clustering.MaximumMatchingAccuracy
M. J. Zaki and W. Meira Jr.
Clustering Validation
In: Data Mining and Analysis: Fundamental Concepts and Algorithms
Online: https://dataminingbook.info/book_html/chap17/book.html
DBLP:books/cu/ZM2014

elki.evaluation.clustering.PairCounting,
elki.similarity.cluster.ClusteringFowlkesMallowsSimilarity
E. B. Fowlkes, C. L. Mallows
A method for comparing two hierarchical clusterings
In: Journal of the American Statistical Association, Vol. 78 Issue 383
DOI:10.2307/2288117

elki.evaluation.clustering.PairCounting,
elki.similarity.cluster.ClusteringAdjustedRandIndexSimilarity
L. Hubert, P. Arabie
Comparing partitions
In: Journal of Classification 2(193)
DOI:10.1007/BF01908075

elki.evaluation.clustering.PairCounting
B. Mirkin
Mathematical Classification and Clustering
In: Nonconvex Optimization and Its Applications
DOI:10.1007/978-1-4613-0457-9

elki.evaluation.clustering.PairCounting,
elki.similarity.cluster.ClusteringRandIndexSimilarity
W. M. Rand
Objective Criteria for the Evaluation of Clustering Methods
In: Journal of the American Statistical Association, Vol. 66 Issue 336
DOI:10.2307/2284239

elki.evaluation.clustering.pairsegments.ClusterPairSegmentAnalysis,
elki.evaluation.clustering.pairsegments.Segments,
elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer
Elke Achtert, Sascha Goldhofer, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek
Evaluation of Clusterings - Metrics and Visual Support
In: Proc. 28th International Conference on Data Engineering (ICDE 2012)
DOI:10.1109/ICDE.2012.128
DBLP:conf/icde/AchtertGKSZ12

elki.evaluation.clustering.PairSetsIndex
M. Rezaei and F. Pasi
Set Matching Measures for External Cluster Validity
In: IEEE Transactions on Knowledge and Data Engineering 28(8)
DOI:10.1109/TKDE.2016.2551240
DBLP:journals/tkde/RezaeiF16

elki.evaluation.clustering.SetMatchingPurity
E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo
A comparison of extrinsic clustering evaluation metrics based on formal constraints
In: Information Retrieval 12(5)
DOI:10.1007/s10791-009-9106-z
DBLP:journals/ir/AmigoGAV09a

elki.evaluation.clustering.SetMatchingPurity
M. Meilă
Comparing clusterings
In: University of Washington, Seattle, Technical Report 418
Online: http://www.stat.washington.edu/mmp/Papers/compare-colt.pdf

elki.evaluation.clustering.SetMatchingPurity
Y. Zhao, G. Karypis
Criterion functions for document clustering: Experiments and analysis
In: University of Minnesota, Dep. Computer Science, Technical Report 01-40
Online: http://www-users.cs.umn.edu/~karypis/publications/Papers/PDF/vscluster.pdf

elki.evaluation.outlier.OutlierPrecisionRecallCurve,
elki.evaluation.scores.AUPRCEvaluation
J. Davis and M. Goadrich
The relationship between Precision-Recall and ROC curves
In: Proc. 23rd Int. Conf. Machine Learning (ICML)
DOI:10.1145/1143844.1143874
DBLP:conf/icml/DavisG06

elki.evaluation.outlier.OutlierPrecisionRecallGainCurve,
elki.evaluation.scores.PRGCEvaluation
P. Flach and M. Knull
Precision-Recall-Gain Curves: {PR} Analysis Done Right
In: Neural Information Processing Systems (NIPS 2015)
Online: http://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right
DBLP:conf/nips/FlachK15

elki.evaluation.outlier.OutlierSmROCCurve
W. Klement, P. A. Flach, N. Japkowicz, S. Matwin
Smooth Receiver Operating Characteristics (smROC) Curves
In: European Conf. Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD'11)
DOI:10.1007/978-3-642-23783-6_13
DBLP:conf/pkdd/KlementFJM11

elki.evaluation.scores.AUPRCEvaluation
T. Saito and M. Rehmsmeier
The Precision-Recall Plot is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets
In: PLoS ONE 10(3)
DOI:10.1371/journal.pone.0118432

elki.evaluation.scores.DCGEvaluation,
elki.evaluation.scores.NDCGEvaluation
K. Järvelin, J. Kekäläinen
Cumulated gain-based evaluation of IR techniques
In: ACM Transactions on Information Systems (TOIS)
DOI:10.1145/582415.582418
DBLP:journals/tois/JarvelinK02

elki.index.idistance.InMemoryIDistanceIndex
H. V. Jagadish, B. C. Ooi, K. L. Tan, C. Yu, R. Zhang
iDistance: An adaptive B+-tree based indexing method for nearest neighbor search
In: ACM Transactions on Database Systems (TODS), 30(2)
DOI:10.1145/1071610.1071612
DBLP:journals/tods/JagadishOTYZ05

elki.index.idistance.InMemoryIDistanceIndex
C. Yu, B. C. Ooi, K. L. Tan, H. V. Jagadish
Indexing the distance: An efficient method to knn processing
In: Proc. 27th Int. Conf. on Very Large Data Bases
Online: http://www.vldb.org/conf/2001/P421.pdf
DBLP:conf/vldb/OoiYTJ01

elki.index.laesa.LAESA
L. Micó, J. Oncina, E. Vidal
A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements
In: Pattern Recognit. Lett. 15(1)
DOI:10.1016/0167-8655(94)90095-7
DBLP:journals/prl/MicoOV94

elki.index.lsh.hashfamilies.CosineHashFunctionFamily,
elki.index.lsh.hashfunctions.CosineLocalitySensitiveHashFunction
M. S. Charikar
Similarity estimation techniques from rounding algorithms
In: Proc. 34th ACM Symposium on Theory of Computing, STOC'02
DOI:10.1145/509907.509965
DBLP:conf/stoc/Charikar02

elki.index.preprocessed.knn.NaiveProjectedKNNPreprocessor,
elki.index.preprocessed.knn.SpacefillingKNNPreprocessor,
elki.index.preprocessed.knn.SpacefillingMaterializeKNNPreprocessor
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel
Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles
In: Proc. 20th Int. Conf. Database Systems for Advanced Applications (DASFAA 2015)
DOI:10.1007/978-3-319-18123-3_2
DBLP:conf/dasfaa/SchubertZK15

elki.index.preprocessed.knn.NNDescent
W. Dong, C. Moses, K. Li
Efficient k-nearest neighbor graph construction for generic similarity measures
In: Proc. 20th Int. Conf. on World Wide Web (WWW'11)
DOI:10.1145/1963405.1963487
DBLP:conf/www/DongCL11

elki.index.preprocessed.knn.RandomSampleKNNPreprocessor
Arthur Zimek, Matthew Gaudet, Ricardo J. G. B. Campello, Jörg Sander
Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles
In: Proc. 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, KDD '13
DOI:10.1145/2487575.2487676
DBLP:conf/kdd/ZimekGCS13

elki.index.projected.PINN
T. de Vries, S. Chawla, M. E. Houle
Finding local anomalies in very high dimensional space
In: Proc. IEEE 10th International Conference on Data Mining (ICDM)
DOI:10.1109/ICDM.2010.151
DBLP:conf/icdm/VriesCH10

elki.index.tree.betula.CFTree,
elki.index.tree.betula.distance.AverageInterclusterDistance,
elki.index.tree.betula.distance.AverageIntraclusterDistance,
elki.index.tree.betula.distance.CentroidEuclideanDistance,
elki.index.tree.betula.distance.CentroidManhattanDistance,
elki.index.tree.betula.distance.RadiusDistance,
elki.index.tree.betula.distance.VarianceIncreaseDistance
Andreas Lang and Erich Schubert
BETULA: Numerically Stable CF-Trees for BIRCH Clustering
In: Int. Conf on Similarity Search and Applications
DOI:10.1007/978-3-030-60936-8_22
DBLP:conf/sisap/LangS20

elki.index.tree.metrical.covertree.CoverTree
A. Beygelzimer, S. Kakade, J. Langford
Cover trees for nearest neighbor
In: In Proc. 23rd Int. Conf. Machine Learning (ICML 2006)
DOI:10.1145/1143844.1143857
DBLP:conf/icml/BeygelzimerKL06

elki.index.tree.metrical.mtreevariants.mtree.MTree,
elki.index.tree.metrical.mtreevariants.strategies.insert.MinimumEnlargementInsert,
elki.index.tree.metrical.mtreevariants.strategies.split.distribution.BalancedDistribution,
elki.index.tree.metrical.mtreevariants.strategies.split.distribution.GeneralizedHyperplaneDistribution,
elki.index.tree.metrical.mtreevariants.strategies.split.MLBDistSplit,
elki.index.tree.metrical.mtreevariants.strategies.split.MMRadSplit,
elki.index.tree.metrical.mtreevariants.strategies.split.MRadSplit,
elki.index.tree.metrical.mtreevariants.strategies.split.RandomSplit
P. Ciaccia, M. Patella, P. Zezula
M-tree: An Efficient Access Method for Similarity Search in Metric Spaces
In: Proc. Int. Conf. Very Large Data Bases (VLDB'97)
Online: http://www.vldb.org/conf/1997/P426.PDF
DBLP:conf/vldb/CiacciaPZ97

elki.index.tree.metrical.mtreevariants.strategies.split.MSTSplit
C. Traina Jr., A. J. M. Traina, B. Seeger, C. Faloutsos
Slim-Trees: High Performance Metric Trees Minimizing Overlap Between Nodes
In: Int. Conf. Extending Database Technology (EDBT'2000)
DOI:10.1007/3-540-46439-5_4
DBLP:conf/edbt/TrainaTSF00

elki.index.tree.metrical.vptree.GNAT
S. Brin
Near Neighbor Search in Large Metric Spaces
In: Proc. 21th Int. Conf. on Very Large Data Bases (VLDB)
Online: http://www.vldb.org/conf/1995/P574.PDF
DBLP:conf/vldb/Brin95

elki.index.tree.metrical.vptree.VPTree
P. N. Yianilos
Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces
In: Proc. ACM/SIGACT-SIAM Symposium on Discrete Algorithms
Online: http://dl.acm.org/citation.cfm?id=313559.313789
DBLP:conf/soda/Yianilos93

elki.index.tree.spatial.kd.MemoryKDTree,
elki.index.tree.spatial.kd.MinimalisticMemoryKDTree,
elki.index.tree.spatial.kd.SmallMemoryKDTree,
elki.math.spacefillingcurves.BinarySplitSpatialSorter
J. L. Bentley
Multidimensional binary search trees used for associative searching
In: Communications of the ACM 18(9)
DOI:10.1145/361002.361007
DBLP:journals/cacm/Bentley75

elki.index.tree.spatial.kd.MemoryKDTree,
elki.index.tree.spatial.kd.MemoryKDTree,
elki.index.tree.spatial.kd.MinimalisticMemoryKDTree,
elki.index.tree.spatial.kd.MinimalisticMemoryKDTree,
elki.index.tree.spatial.kd.SmallMemoryKDTree,
elki.index.tree.spatial.kd.SmallMemoryKDTree
S. Arya and D. M. Mount
Algorithms for fast vector quantization
In: Proc. DCC '93: Data Compression Conference
DOI:10.1109/DCC.1993.253111

elki.index.tree.spatial.kd.split.MeanVarianceSplit,
elki.index.tree.spatial.kd.split.MedianVarianceSplit
S. M. Omohundro
Efficient Algorithms with Neural Network Behaviour
In: Journal of Complex Systems 1(2)
Online: https://www.complex-systems.com/abstracts/v01_i02_a04/

elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery,
elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNSearcher
G. R. Hjaltason, H. Samet
Ranking in spatial databases
In: 4th Symp. Advances in Spatial Databases (SSD'95)
DOI:10.1007/3-540-60159-7_6
DBLP:conf/ssd/HjaltasonS95

elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeRangeQuery,
elki.index.tree.spatial.rstarvariants.query.RStarTreeRangeSearcher
J. Kuan, P. Lewis
Fast k nearest neighbour search for R-tree family
In: Proc. Int. Conf Information, Communications and Signal Processing, ICICS 1997
DOI:10.1109/ICICS.1997.652114

elki.index.tree.spatial.rstarvariants.rstar.RStarTree,
elki.index.tree.spatial.rstarvariants.strategies.insert.ApproximativeLeastOverlapInsertionStrategy,
elki.index.tree.spatial.rstarvariants.strategies.insert.CombinedInsertionStrategy,
elki.index.tree.spatial.rstarvariants.strategies.insert.LeastEnlargementWithAreaInsertionStrategy,
elki.index.tree.spatial.rstarvariants.strategies.insert.LeastOverlapInsertionStrategy,
elki.index.tree.spatial.rstarvariants.strategies.overflow.LimitedReinsertOverflowTreatment,
elki.index.tree.spatial.rstarvariants.strategies.reinsert.CloseReinsert,
elki.index.tree.spatial.rstarvariants.strategies.reinsert.FarReinsert,
elki.index.tree.spatial.rstarvariants.strategies.split.TopologicalSplitter
Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger
The R*-tree: an efficient and robust access method for points and rectangles
In: Proc. 1990 ACM SIGMOD Int. Conf. Management of Data
DOI:10.1145/93597.98741
DBLP:conf/sigmod/BeckmannKSS90

elki.index.tree.spatial.rstarvariants.strategies.bulk.OneDimSortBulkSplit
N. Roussopoulos, D. Leifker
Direct spatial search on pictorial databases using packed R-trees
In: ACM SIGMOD Record 14-4
DOI:10.1145/971699.318900

elki.index.tree.spatial.rstarvariants.strategies.bulk.SortTileRecursiveBulkSplit
S. T. Leutenegger, M. A. Lopez, J. Edgington
STR: A simple and efficient algorithm for R-tree packing
In: Proc. 13th International Conference on Data Engineering (ICDE 1997)
DOI:10.1109/ICDE.1997.582015
DBLP:conf/icde/LeuteneggerEL97

elki.index.tree.spatial.rstarvariants.strategies.bulk.SpatialSortBulkSplit
I. Kamel, C. Faloutsos
On packing R-trees
In: Proc. 2nd Int. Conf. on Information and Knowledge Management
DOI:10.1145/170088.170403
DBLP:conf/cikm/KamelF93

elki.index.tree.spatial.rstarvariants.strategies.insert.LeastEnlargementInsertionStrategy,
elki.index.tree.spatial.rstarvariants.strategies.split.RTreeLinearSplit,
elki.index.tree.spatial.rstarvariants.strategies.split.RTreeQuadraticSplit
A. Guttman
R-Trees: A Dynamic Index Structure For Spatial Searching
In: Proc. 1984 ACM SIGMOD Int. Conf. on Management of Data
DOI:10.1145/971697.602266

elki.index.tree.spatial.rstarvariants.strategies.split.AngTanLinearSplit
C. H. Ang, T. C. Tan
New linear node splitting algorithm for R-trees
In: Proc. 5th Int. Sym. on Advances in Spatial Databases
DOI:10.1007/3-540-63238-7_38
DBLP:conf/ssd/AngT97

elki.index.tree.spatial.rstarvariants.strategies.split.GreeneSplit
D, Greene
An implementation and performance analysis of spatial data access methods
In: Proceedings of the Fifth International Conference on Data Engineering
DOI:10.1109/ICDE.1989.47268
DBLP:conf/icde/Greene89

elki.index.vafile.DAFile,
elki.index.vafile.PartialVAFile
Hans-Peter Kriegel, Peer Kröger, Matthias Schubert, Ziyue Zhu
Efficient Query Processing in Arbitrary Subspaces Using Vector Approximations
In: Proc. 18th Int. Conf. on Scientific and Statistical Database Management (SSDBM 06)
DOI:10.1109/SSDBM.2006.23
DBLP:conf/ssdbm/KriegelKSZ06

elki.index.vafile.VAFile
R. Weber, S. Blott
An approximation based data structure for similarity search
In: Report TR1997b, ETH Zentrum, Zurich, Switzerland
Online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.480&rep=rep1&type=pdf

elki.itemsetmining.APRIORI
R. Agrawal, R. Srikant
Fast Algorithms for Mining Association Rules
In: Proc. 20th Int. Conf. on Very Large Data Bases (VLDB '94)
Online: http://www.vldb.org/conf/1994/P487.PDF
DBLP:conf/vldb/AgrawalS94

elki.itemsetmining.associationrules.AssociationRuleGeneration
M. J. Zaki, W. Meira Jr.
Itemset Mining
In: Data mining and analysis: fundamental concepts and algorithms
Online: https://dataminingbook.info/book_html/chap8/book.html
DBLP:books/cu/ZM2014

elki.itemsetmining.associationrules.interest.AddedValue
S. Sahar, Sigal, Y. Mansour
Empirical evaluation of interest-level criteria
In: Proc. SPIE 3695, Data Mining and Knowledge Discovery: Theory, Tools, and Technology
DOI:10.1117/12.339991
DBLP:conf/dmkdttt/SaharM99

elki.itemsetmining.associationrules.interest.CertaintyFactor
F. Berzal, I. Blanco, D. Sánchez, M. Vila
Measuring the accuracy and interest of association rules: A new framework
In: Intelligent Data Analysis, 6(3), 2002
Online: http://content.iospress.com/articles/intelligent-data-analysis/ida00089
DBLP:journals/ida/GalianoBSM02

elki.itemsetmining.associationrules.interest.Confidence
R. Agrawal, T. Imielinski, A. Swami
Mining association rules between sets of items in large databases
In: Proc. ACM SIGMOD International Conference on Management of Data
DOI:10.1145/170036.170072
DBLP:conf/sigmod/AgrawalIS93

elki.itemsetmining.associationrules.interest.Conviction
S. Brin, R. Motwani, J. D Ullman, S Tsur
Dynamic itemset counting and implication rules for market basket data
In: Proc. 1997 ACM SIGMOD international conference on management of data
DOI:10.1145/253260.253325
DBLP:conf/sigmod/BrinMUT97

elki.itemsetmining.associationrules.interest.Cosine,
elki.itemsetmining.associationrules.interest.GiniIndex
P. Tan, V. Kumar
Interestingness measures for association patterns: A perspective
In: Proc. Workshop on Postprocessing in Machine Learning and Data Mining
Online: https://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/00-036.pdf

elki.itemsetmining.associationrules.interest.GiniIndex
L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone
Classification and Regression Trees

elki.itemsetmining.associationrules.interest.Jaccard
C. J. van Rijsbergen
Information Retrieval, 2nd Edition
In: Butterworths, London, 1979
DBLP:books/bu/Rijsbergen79

elki.itemsetmining.associationrules.interest.Jaccard,
elki.itemsetmining.associationrules.interest.LaplaceCorrectedConfidence,
elki.itemsetmining.associationrules.interest.OddsRatio,
elki.itemsetmining.associationrules.interest.PhiCorrelationCoefficient,
elki.itemsetmining.associationrules.interest.YulesQ,
elki.itemsetmining.associationrules.interest.YulesY
P.-N. Tan, V. Kumar, J. Srivastava
Selecting the right objective measure for association analysis
In: Information Systems 29.4
DOI:10.1016/S0306-4379(03)00072-3
DBLP:journals/is/TanKS04

elki.itemsetmining.associationrules.interest.JMeasure
R. M. Goodman, P. Smyth
Rule induction using information theory
In: Knowledge Discovery in Databases 1991
DBLP:books/mit/PF91/SmythG91

elki.itemsetmining.associationrules.interest.Klosgen
W. Klösgen
Explora: A multipattern and multistrategy discovery assistant
In: Advances in Knowledge Discovery and Data Mining
DBLP:books/mit/fayyadPSU96/Klosgen96

elki.itemsetmining.associationrules.interest.LaplaceCorrectedConfidence
P. Clark, R. Boswell
Rule induction with CN2: Some recent improvements
In: European Working Session on Learning, EWSL-91
DOI:10.1007/BFb0016999
DBLP:conf/ecml/ClarkB91

elki.itemsetmining.associationrules.interest.Leverage
G. Piatetsky-Shapiro
Discovery, analysis, and presentation of strong rules
In: Knowledge Discovery in Databases 1991
DBLP:books/mit/PF91/Piatetsky91

elki.itemsetmining.associationrules.interest.Lift
S. Brin, R. Motwani, C. Silverstein
Beyond market baskets: Generalizing association rules to correlations
In: ACM SIGMOD Record 26
DOI:10.1145/253260.253327
DBLP:conf/sigmod/BrinMS97

elki.itemsetmining.associationrules.interest.OddsRatio
F. Mosteller
Association and Estimation in Contingency Tables
In: Journal of the American Statistical Association 63:321
DOI:10.1080/01621459.1968.11009219

elki.itemsetmining.associationrules.interest.PhiCorrelationCoefficient
A. Agresti
Categorical Data Analysis
In: Categorical Data Analysis

elki.itemsetmining.associationrules.interest.SebagSchonauer
M. Sebag, M. Schoenauer
Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases
In: Proceedings of the European Knowledge Acquisition Workshop (EKAW'88)

elki.itemsetmining.associationrules.interest.YulesQ
G. U. Yule
On the association of attributes in statistics
In: Philosophical Transactions of the Royal Society A 194
DOI:10.1098/rsta.1900.0019

elki.itemsetmining.associationrules.interest.YulesY
G. U. Yule
On the methods of measuring association between two attributes
In: Journal of the Royal Statistical Society 75 (6)
DOI:10.2307/2340126

elki.itemsetmining.Eclat
M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li
New Algorithms for Fast Discovery of Association Rules
In: Proc. 3rd ACM SIGKDD '97 Int. Conf. on Knowledge Discovery and Data Mining
Online: http://www.aaai.org/Library/KDD/1997/kdd97-060.php
DBLP:conf/kdd/ZakiPOL97

elki.itemsetmining.FPGrowth
J. Han, J. Pei, Y. Yin
Mining frequent patterns without candidate generation
In: Proc. ACM SIGMOD Int. Conf. Management of Data (SIGMOD 2000)
DOI:10.1145/342009.335372
DBLP:conf/sigmod/HanPY00

elki.math.geodesy.SphereUtil
E. Williams
Aviation Formulary
Online: http://www.edwilliams.org/avform.htm

elki.math.geodesy.SphereUtil
T. Vincenty
Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations
In: Survey Review 23:176
DOI:10.1179/sre.1975.23.176.88

elki.math.geodesy.SphereUtil
R. W. Sinnott
Virtues of the Haversine
In: Sky and Telescope 68(2)

elki.math.geometry.AlphaShape
H. Edelsbrunner, D. G. Kirkpatrick, R. Seidel
On the shape of a set of points in the plane
In: IEEE Trans. Inf. Theory 29(4)
DOI:10.1109/TIT.1983.1056714
DBLP:journals/tit/EdelsbrunnerKS83

elki.math.geometry.GrahamScanConvexHull2D
P. Graham
An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set
In: Information Processing Letters 1
DOI:10.1016/0020-0190(72)90045-2
DBLP:journals/ipl/Graham72

elki.math.geometry.PrimsMinimumSpanningTree
R. C. Prim
Shortest connection networks and some generalizations
In: Bell System Technical Journal, 36 (1957)
DOI:10.1002/j.1538-7305.1957.tb01515.x

elki.math.geometry.SweepHullDelaunay2D
D. Sinclair
S-hull: a fast sweep-hull routine for Delaunay triangulation
Online: http://s-hull.org/

elki.math.linearalgebra.pca.AutotuningPCA,
elki.math.linearalgebra.pca.WeightedCovarianceMatrixBuilder
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
A General Framework for Increasing the Robustness of PCA-based Correlation Clustering Algorithms
In: Proc. 20th Intl. Conf. on Scientific and Statistical Database Management (SSDBM)
DOI:10.1007/978-3-540-69497-7_27
DBLP:conf/ssdbm/KriegelKSZ08

elki.math.linearalgebra.pca.RANSACCovarianceMatrixBuilder,
elki.outlier.COP,
elki.utilities.scaling.outlier.COPOutlierScaling,
elki.visualization.visualizers.scatterplot.outlier.COPVectorVisualization
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces
In: Proc. IEEE Int. Conf. on Data Mining (ICDM 2012)
DOI:10.1109/ICDM.2012.21
DBLP:conf/icdm/KriegelKSZ12

elki.math.linearalgebra.pca.RANSACCovarianceMatrixBuilder
M. A. Fischler, R. C. Bolles
Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
In: Communications of the ACM 24(6)
DOI:10.1145/358669.358692
DBLP:journals/cacm/FischlerB81

elki.math.Mean
P. M. Neely
Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients
In: Communications of the ACM 9(7), 1966
DOI:10.1145/365719.365958

elki.math.MeanVariance
B. P. Welford
Note on a method for calculating corrected sums of squares and products
In: Technometrics 4(3)
DOI:10.2307/1266577

elki.math.MeanVariance,
elki.math.StatisticalMoments
Erich Schubert, Michael Gertz
Numerically Stable Parallel Computation of (Co-)Variance
In: Proc. 30th Int. Conf. Scientific and Statistical Database Management (SSDBM 2018)
DOI:10.1145/3221269.3223036
DBLP:conf/ssdbm/SchubertG18

elki.math.MeanVariance,
elki.math.StatisticalMoments
E. A. Youngs, E. M. Cramer
Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms
In: Technometrics 13(3)
DOI:10.1080/00401706.1971.10488826

elki.math.MeanVariance
D. H. D. West
Updating Mean and Variance Estimates: An Improved Method
In: Communications of the ACM 22(9)
DOI:10.1145/359146.359153
DBLP:journals/cacm/West79

elki.math.spacefillingcurves.HilbertSpatialSorter
D. Hilbert
Ueber die stetige Abbildung einer Linie auf ein Flächenstück
In: Mathematische Annalen, 38(3)
Online: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002253135

elki.math.spacefillingcurves.PeanoSpatialSorter
G. Peano
Sur une courbe, qui remplit toute une aire plane
In: Mathematische Annalen 36(1)
Online: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002252376

elki.math.StatisticalMoments
T. B. Terriberry
Computing Higher-Order Moments Online
Online: http://people.xiph.org/~tterribe/notes/homs.html

elki.math.StatisticalMoments
P. Pébay
Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments
In: Sandia Report SAND2008-6212, Sandia National Laboratories
Online: https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf

elki.math.statistics.dependence.DCor
G. J. Székely, M. L. Rizzo, N. K. Bakirov
Measuring and testing dependence by correlation of distances
In: The Annals of Statistics, 35(6), 2769-2794
DOI:10.1214/009053607000000505

elki.math.statistics.dependence.HiCSDependence,
elki.outlier.meta.HiCS
F. Keller, E. Müller, K. Böhm
HiCS: High Contrast Subspaces for Density-Based Outlier Ranking
In: Proc. IEEE 28th Int. Conf. on Data Engineering (ICDE 2012)
DOI:10.1109/ICDE.2012.88
DBLP:conf/icde/KellerMB12

elki.math.statistics.dependence.HiCSDependence,
elki.math.statistics.dependence.SlopeDependence,
elki.math.statistics.dependence.SlopeInversionDependence,
elki.math.statistics.dependence.SURFINGDependence,
elki.visualization.parallel3d.layout.CompactCircularMSTLayout3DPC,
elki.visualization.parallel3d.layout.MultidimensionalScalingMSTLayout3DPC,
elki.visualization.parallel3d.layout.SimpleCircularMSTLayout3DPC,
elki.visualization.parallel3d.OpenGL3DParallelCoordinates,
elki.visualization.parallel3d.Parallel3DRenderer
Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek
Interactive Data Mining with 3D-Parallel-Coordinate-Trees
In: Proc. 2013 ACM Int. Conf. on Management of Data (SIGMOD 2013)
DOI:10.1145/2463676.2463696
DBLP:conf/sigmod/AchtertKSZ13

elki.math.statistics.dependence.HoeffdingsD
W. Hoeffding
A non-parametric test of independence
In: The Annals of Mathematical Statistics 19
Online: http://www.jstor.org/stable/2236021

elki.math.statistics.dependence.HoughSpaceMeasure
A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. A. Magnor, D. A. Keim
Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data
In: IEEE Trans. Visualization and Computer Graphics
DOI:10.1109/TVCG.2010.242
DBLP:journals/tvcg/TatuAEBTMK11

elki.math.statistics.dependence.MaximumConditionalEntropy
D. Guo
Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
In: Information Visualization, 2(4)
DOI:10.1057/palgrave.ivs.9500053
DBLP:journals/ivs/Guo03

elki.math.statistics.dependence.mcde.MWPTest,
elki.math.statistics.dependence.MCDEDependence
E. Fouché, K. Böhm
Monte Carlo Density Estimation
In: Proc. Scientific and Statistical Database Management (SSDBM 2019)
DOI:10.1145/3335783.3335795
DBLP:conf/ssdbm/FoucheB19

elki.math.statistics.dependence.SURFINGDependence
Christian Baumgartner, Claudia Plant, Karin Kailing, Hans-Peter Kriegel, Peer Kröger
Subspace Selection for Clustering High-Dimensional Data
In: Proc. IEEE International Conference on Data Mining (ICDM 2004)
DOI:10.1109/ICDM.2004.10112
DBLP:conf/icdm/BaumgartnerPKKK04

elki.math.statistics.distribution.ChiSquaredDistribution,
elki.math.statistics.distribution.GammaDistribution
D. J. Best, D. E. Roberts
Algorithm AS 91: The percentage points of the χ² distribution
In: Journal of the Royal Statistical Society. Series C (Applied Statistics)
DOI:10.2307/2347113

elki.math.statistics.distribution.estimator.CauchyMADEstimator,
elki.math.statistics.distribution.estimator.ExponentialMADEstimator,
elki.math.statistics.distribution.estimator.GumbelMADEstimator,
elki.math.statistics.distribution.estimator.LaplaceMADEstimator,
elki.math.statistics.distribution.estimator.LogLogisticMADEstimator,
elki.math.statistics.distribution.estimator.RayleighMADEstimator,
elki.math.statistics.distribution.estimator.UniformMADEstimator,
elki.math.statistics.distribution.estimator.WeibullLogMADEstimator
D. J. Olive
Applied Robust Statistics
Online: http://lagrange.math.siu.edu/Olive/preprints.htm

elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
J. Olivier, M. M. Norberg
Positively skewed data: Revisiting the Box-Cox power transformation
In: International Journal of Psychological Research 3(1)
DOI:10.21500/20112084.846

elki.math.statistics.distribution.estimator.ExponentialLMMEstimator,
elki.math.statistics.distribution.estimator.GammaLMMEstimator,
elki.math.statistics.distribution.estimator.GeneralizedLogisticAlternateLMMEstimator,
elki.math.statistics.distribution.estimator.GumbelLMMEstimator,
elki.math.statistics.distribution.estimator.LogisticLMMEstimator,
elki.math.statistics.distribution.estimator.LogNormalLMMEstimator,
elki.math.statistics.distribution.estimator.NormalLMMEstimator,
elki.math.statistics.distribution.estimator.SkewGNormalLMMEstimator,
elki.math.statistics.intrinsicdimensionality.LMomentsEstimator,
elki.math.statistics.ProbabilityWeightedMoments
J. R. M. Hosking
Fortran routines for use with the method of L-moments Version 3.03
In: IBM Research Technical Report

elki.math.statistics.distribution.estimator.ExponentialMedianEstimator,
elki.math.statistics.distribution.estimator.LogisticMADEstimator
D. J. Olive
Robust Estimators for Transformed Location Scale Families

elki.math.statistics.distribution.estimator.GammaChoiWetteEstimator
S. C. Choi, R. Wette
Maximum likelihood estimation of the parameters of the gamma distribution and their bias
In: Technometrics
DOI:10.2307/1266892

elki.math.statistics.distribution.estimator.GammaMOMEstimator
G. Casella, R. L. Berger
Point Estimation (Chapter 7)
In: Statistical inference. Vol. 70

elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator,
elki.math.statistics.distribution.estimator.GeneralizedParetoLMMEstimator,
elki.math.statistics.ProbabilityWeightedMoments
J. R. M. Hosking, J. R. Wallis, E. F. Wood
Estimation of the generalized extreme-value distribution by the method of probability-weighted moments.
In: Technometrics 27.3
DOI:10.1080/00401706.1985.10488049

elki.math.statistics.distribution.estimator.LaplaceMLEEstimator
R. M. Norton
The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator
In: The American Statistician 38 (2)
DOI:10.2307/2683252

elki.math.statistics.distribution.estimator.LogNormalBilkovaLMMEstimator
D. Bílková
Lognormal distribution and using L-moment method for estimating its parameters
In: Int. Journal of Mathematical Models and Methods in Applied Sciences (NAUN)
Online: http://www.naun.org/multimedia/NAUN/m3as/17-079.pdf

elki.math.statistics.distribution.estimator.LogNormalLogMADEstimator,
elki.math.statistics.distribution.estimator.NormalMADEstimator
F. R. Hampel
The Influence Curve and Its Role in Robust Estimation
In: Journal of the American Statistical Association, June 1974, Vol. 69, No. 346
DOI:10.2307/2285666

elki.math.statistics.distribution.estimator.meta.WinsorizingEstimator
C. Hastings, F. Mosteller, J. W. Tukey, C. P. Winsor
Low moments for small samples: a comparative study of order statistics
In: The Annals of Mathematical Statistics, 18(3)
DOI:10.1214/aoms/1177730388

elki.math.statistics.distribution.GammaDistribution
J. M. Bernando
Algorithm AS 103: Psi (Digamma) Function
In: Statistical Algorithms
DOI:10.2307/2347257

elki.math.statistics.distribution.GammaDistribution
J. H. Ahrens, U. Dieter
Computer methods for sampling from gamma, beta, Poisson and binomial distributions
In: Computing 12
DOI:10.1007/BF02293108
DBLP:journals/computing/AhrensD74

elki.math.statistics.distribution.GammaDistribution
J. H. Ahrens, U. Dieter
Generating gamma variates by a modified rejection technique
In: Communications of the ACM 25
DOI:10.1145/358315.358390
DBLP:journals/cacm/AhrensD82

elki.math.statistics.distribution.HaltonUniformDistribution
X. Wang, F. J. Hickernell
Randomized halton sequences
In: Mathematical and Computer Modelling Vol. 32 (7)
DOI:10.1016/S0895-7177(00)00178-3

elki.math.statistics.distribution.NormalDistribution
G. Marsaglia
Evaluating the Normal Distribution
In: Journal of Statistical Software 11(4)
DOI:10.18637/jss.v011.i04

elki.math.statistics.distribution.NormalDistribution
T. Ooura
Gamma / Error Functions
Online: http://www.kurims.kyoto-u.ac.jp/~ooura/gamerf.html

elki.math.statistics.distribution.PoissonDistribution
C. Loader
Fast and accurate computation of binomial probabilities
Online: http://projects.scipy.org/scipy/raw-attachment/ticket/620/loader2000Fast.pdf

elki.math.statistics.distribution.SkewGeneralizedNormalDistribution
J. R. M. Hosking, J. R. Wallis
Regional frequency analysis: an approach based on L-moments
In: Regional frequency analysis: an approach based on L-moments
DOI:10.1017/CBO9780511529443

elki.math.statistics.intrinsicdimensionality.ABIDEstimator,
elki.math.statistics.intrinsicdimensionality.RABIDEstimator
Erik Thordsen and Erich Schubert
ABID: Angle Based Intrinsic Dimensionality
In: Proc. 13th Int. Conf. Similarity Search and Applications (SISAP'2020)
DOI:10.1007/978-3-030-60936-8_17
DBLP:conf/sisap/ThordsenS20

elki.math.statistics.intrinsicdimensionality.AggregatedHillEstimator
R. Huisman, K. G. Koedijk, C. J. M. Kool, F. Palm
Tail-Index Estimates in Small Samples
In: Journal of Business & Economic Statistics
DOI:10.1198/073500101316970421

elki.math.statistics.intrinsicdimensionality.ALIDEstimator
Oussama Chelly, Michael E. Houle, Ken-ichi Kawarabayashi
Enhanced Estimation of Local Intrinsic Dimensionality Using Auxiliary Distances
In: Contributed to ELKI

elki.math.statistics.intrinsicdimensionality.GEDEstimator
M. E. Houle, H. Kashima, M. Nett
Generalized expansion dimension
In: 12th International Conference on Data Mining Workshops (ICDMW)
DOI:10.1109/ICDMW.2012.94
DBLP:conf/icdm/HouleKN12

elki.math.statistics.intrinsicdimensionality.HillEstimator
B. M. Hill
A simple general approach to inference about the tail of a distribution
In: The annals of statistics 3(5)
DOI:10.1214/aos/1176343247

elki.math.statistics.intrinsicdimensionality.LMomentsEstimator,
elki.math.statistics.intrinsicdimensionality.MOMEstimator,
elki.math.statistics.intrinsicdimensionality.PWM2Estimator,
elki.math.statistics.intrinsicdimensionality.PWMEstimator,
elki.math.statistics.intrinsicdimensionality.RVEstimator
L. Amsaleg, O. Chelly, T. Furon, S. Girard, M. E. Houle, K. Kawarabayashi, M. Nett
Estimating Local Intrinsic Dimensionality
In: Proc. SIGKDD International Conference on Knowledge Discovery and Data Mining 2015
DOI:10.1145/2783258.2783405
DBLP:conf/kdd/AmsalegCFGHKN15

elki.math.statistics.intrinsicdimensionality.PWM2Estimator,
elki.math.statistics.intrinsicdimensionality.PWMEstimator
J. Maciunas Landwehr, N. C. Matalas, J. R. Wallis
Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles
In: Water Resources Research 15(5)
DOI:10.1029/WR015i005p01055

elki.math.statistics.intrinsicdimensionality.TightLIDEstimator
Laurent Amsaleg, Oussama Chelly, Michael E. Houle, Ken-ichi Kawarabayashi, Milos Radovanovic, Weeris Treeratanajaru
Intrinsic Dimensionality Estimation within Tight Localities
In: Proc. 2019 SIAM International Conference on Data Mining (SDM)
DOI:10.1137/1.9781611975673.21
DBLP:conf/sdm/AmsalegCHKRT19

elki.math.statistics.intrinsicdimensionality.ZipfEstimator
J. Beirlant, G. Dierckx, A. Guillou
Estimation of the extreme-value index and generalized quantile plots
In: Bernoulli 11(6)
DOI:10.3150/bj/1137421635

elki.math.statistics.intrinsicdimensionality.ZipfEstimator
J. Schultze, J. Steinebach
On Least Squares Estimates of an Exponential Tail Coefficient
In: Statistics & Risk Modeling 14(4)
DOI:10.1524/strm.1996.14.4.353

elki.math.statistics.intrinsicdimensionality.ZipfEstimator
M. Kratz, S. I. Resnick
The QQ-estimator and heavy tails
In: Communications in Statistics. Stochastic Models 12(4)
DOI:10.1080/15326349608807407

elki.math.statistics.kernelfunctions.BiweightKernelDensityFunction,
elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction,
elki.math.statistics.kernelfunctions.GaussianKernelDensityFunction,
elki.math.statistics.kernelfunctions.KernelDensityFunction,
elki.math.statistics.kernelfunctions.TriweightKernelDensityFunction,
elki.math.statistics.kernelfunctions.UniformKernelDensityFunction
J. S. Marron, D. Nolan
Canonical kernels for density estimation
In: Statistics & Probability Letters, Volume 7, Issue 3
DOI:10.1016/0167-7152(88)90050-8

elki.math.statistics.tests.AndersonDarlingTest
T. W. Anderson, D. A. Darling
Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes
In: Annals of mathematical statistics 23(2)
DOI:10.1214/aoms/1177729437

elki.math.statistics.tests.AndersonDarlingTest
L. Jäntschi and S. D. Bolboacă
Computation of Probability Associated with Anderson-Darling Statistic
In: Mathematics 6(6)
DOI:10.3390/math6060088

elki.math.statistics.tests.AndersonDarlingTest
M. A. Stephens
EDF Statistics for Goodness of Fit and Some Comparisons
In: Journal of the American Statistical Association, Volume 69, Issue 347
DOI:10.1080/01621459.1974.10480196

elki.math.statistics.tests.AndersonDarlingTest
R. B. D'Agostino
Tests for the Normal Distribution
In: Goodness-of-Fit Techniques
DOI:10.1201/9780203753064-9

elki.math.statistics.tests.StandardizedTwoSampleAndersonDarlingTest
A. N. Pettitt
A two-sample Anderson-Darling rank statistic
In: Biometrika 63 (1)
DOI:10.1093/biomet/63.1.161

elki.math.statistics.tests.StandardizedTwoSampleAndersonDarlingTest
F. W. Scholz, M. A. Stephens
K-sample Anderson–Darling tests
In: Journal of the American Statistical Association, 82(399)
DOI:10.1080/01621459.1987.10478517

elki.math.statistics.tests.StandardizedTwoSampleAndersonDarlingTest
D. A. Darling
The Kolmogorov-Smirnov, Cramer-von Mises tests
In: Annals of mathematical statistics 28(4)
DOI:10.1214/aoms/1177706788

elki.outlier.anglebased.ABOD,
elki.outlier.anglebased.FastABOD,
elki.outlier.anglebased.LBABOD
Hans-Peter Kriegel, Matthias Schubert, Arthur Zimek
Angle-Based Outlier Detection in High-dimensional Data
In: Proc. 14th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD'08)
DOI:10.1145/1401890.1401946
DBLP:conf/kdd/KriegelSZ08

elki.outlier.clustering.CBLOF
Z. He, X. Xu, S. Deng
Discovering cluster-based local outliers
In: Pattern Recognition Letters 24(9-10)
DOI:10.1016/S0167-8655(03)00003-5
DBLP:journals/prl/HeXD03

elki.outlier.density.HySortOD
Eugênio F. Cabral, and Robson L.F. Cordeiro
Fast and Scalable Outlier Detection with Sorted Hypercubes
In: Proc. 29th ACM Int. Conf. on Information & Knowledge Management (CIKM'20)
DOI:10.1145/3340531.3412033

elki.outlier.density.IsolationForest
F. T. Liu, K. M. Ting, Z.-H. Zhou
Isolation-Based Anomaly Detection
In: Transactions on Knowledge Discovery from Data (TKDD)
DOI:10.1145/2133360.2133363
DBLP:journals/tkdd/LiuTZ12

elki.outlier.distance.AbstractDBOutlier,
elki.outlier.distance.DBOutlierDetection
E. M. Knorr, R. T. Ng
Algorithms for Mining Distance-Based Outliers in Large Datasets
In: Proc. Int. Conf. on Very Large Databases (VLDB'98)
Online: http://www.vldb.org/conf/1998/p392.pdf
DBLP:conf/vldb/KnorrN98

elki.outlier.distance.DBOutlierScore
Generalization of a method proposed in
E. M. Knorr, R. T. Ng
Algorithms for Mining Distance-Based Outliers in Large Datasets
In: Proc. Int. Conf. on Very Large Databases (VLDB'98)
Online: http://www.vldb.org/conf/1998/p392.pdf
DBLP:conf/vldb/KnorrN98

elki.outlier.distance.HilOut,
elki.outlier.distance.KNNWeightOutlier
F. Angiulli, C. Pizzuti
Fast Outlier Detection in High Dimensional Spaces
In: Proc. European Conf. Principles of Knowledge Discovery and Data Mining (PKDD'02)
DOI:10.1007/3-540-45681-3_2
DBLP:conf/pkdd/AngiulliP02

elki.outlier.distance.KNNDD
D. de Ridder, D. M. J. Tax, R. P. W. Duin
An experimental comparison of one-class classification methods
In: Proc. 4th Ann. Conf. Advanced School for Computing and Imaging (ASCI'98)
Online: http://prlab.tudelft.nl/sites/default/files/asci_98.pdf

elki.outlier.distance.KNNOutlier
S. Ramaswamy, R. Rastogi, K. Shim
Efficient Algorithms for Mining Outliers from Large Data Sets
In: Proc. Int. Conf. on Management of Data (SIGMOD 2000)
DOI:10.1145/342009.335437
DBLP:conf/sigmod/RamaswamyRS00

elki.outlier.distance.KNNSOS,
elki.outlier.distance.SOS,
elki.outlier.intrinsic.ISOS,
elki.projection.IntrinsicNearestNeighborAffinityMatrixBuilder
Erich Schubert, Michael Gertz
Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection: A Remedy Against the Curse of Dimensionality?
In: Proc. Int. Conf. Similarity Search and Applications, SISAP 2017
DOI:10.1007/978-3-319-68474-1_13
DBLP:conf/sisap/SchubertG17

elki.outlier.distance.KNNSOS,
elki.outlier.distance.SOS
J. Janssens, F. Huszár, E. Postma, J. van den Herik
Stochastic Outlier Selection
In: TiCC TR 2012–001
Online: https://www.tilburguniversity.edu/upload/b7bac5b2-9b00-402a-9261-7849aa019fbb_sostr.pdf

elki.outlier.distance.LocalIsolationCoefficient
B. Yu, M. Song, L. Wang
Local Isolation Coefficient-Based Outlier Mining Algorithm
In: Int. Conf. on Information Technology and Computer Science (ITCS) 2009
DOI:10.1109/ITCS.2009.230

elki.outlier.distance.ODIN,
tutorial.outlier.ODIN
V. Hautamäki, I. Kärkkäinen, P. Fränti
Outlier detection using k-nearest neighbour graph
In: Proc. 17th Int. Conf. Pattern Recognition (ICPR 2004)
DOI:10.1109/ICPR.2004.1334558
DBLP:conf/icpr/HautamakiKF04

elki.outlier.distance.parallel.ParallelKNNOutlier,
elki.outlier.distance.parallel.ParallelKNNWeightOutlier,
elki.outlier.lof.parallel,
elki.outlier.lof.parallel.ParallelLOF,
elki.outlier.lof.parallel.ParallelSimplifiedLOF,
elki.outlier.lof.SimplifiedLOF
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel
Local Outlier Detection Reconsidered: a Generalized View on Locality with Applications to Spatial, Video, and Network Outlier Detection
In: Data Mining and Knowledge Discovery 28(1)
DOI:10.1007/s10618-012-0300-z
DBLP:journals/datamine/SchubertZK14

elki.outlier.distance.ReferenceBasedOutlierDetection
Y. Pei, O. R. Zaiane, Y. Gao
An Efficient Reference-based Approach to Outlier Detection in Large Datasets
In: Proc. 6th IEEE Int. Conf. on Data Mining (ICDM '06)
DOI:10.1109/ICDM.2006.17
DBLP:conf/icdm/PeiZG06

elki.outlier.DWOF
R. Momtaz, N. Mohssen, M. A. Gowayyed
DWOF: A Robust Density-Based Outlier Detection Approach
In: Proc. 6th Iberian Conf. Pattern Recognition and Image Analysis (IbPRIA 2013)
DOI:10.1007/978-3-642-38628-2_61
DBLP:conf/ibpria/MomtazMG13

elki.outlier.GaussianUniformMixture
Generalization using the likelihood gain as outlier score of
E. Eskin
Anomaly detection over noisy data using learned probability distributions
In: Proc. 17th Int. Conf. on Machine Learning (ICML-2000)
DOI:10.7916/D8C53SKF
DBLP:conf/icml/Eskin00

elki.outlier.intrinsic.IDOS
Jonathan von Brünken, Michael E. Houle, Arthur Zimek
Intrinsic Dimensional Outlier Detection in High-Dimensional Data
In: NII Technical Report (NII-2015-003E)
Online: http://www.nii.ac.jp/TechReports/15-003E.html

elki.outlier.intrinsic.LID
Michael E. Houle, Erich Schubert, Arthur Zimek
On the Correlation Between Local Intrinsic Dimensionality and Outlierness
In: Proc. 11th Int. Conf. Similarity Search and Applications (SISAP'2018)
DOI:10.1007/978-3-030-02224-2_14
DBLP:conf/sisap/HouleSZ18

elki.outlier.lof.ALOCI,
elki.outlier.lof.LOCI
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, C. Faloutsos
LOCI: Fast Outlier Detection Using the Local Correlation Integral
In: Proc. 19th IEEE Int. Conf. on Data Engineering (ICDE '03)
DOI:10.1109/ICDE.2003.1260802
DBLP:conf/icde/PapadimitriouKGF03

elki.outlier.lof.COF
J. Tang, Z. Chen, A. W. C. Fu, D. W. Cheung
Enhancing effectiveness of outlier detections for low density patterns
In: In Advances in Knowledge Discovery and Data Mining
DOI:10.1007/3-540-47887-6_53
DBLP:conf/pakdd/TangCFC02

elki.outlier.lof.FlexibleLOF,
elki.outlier.lof.LOF
Markus M. Breunig, Hans-Peter Kriegel, Raymond Ng, Jörg Sander
LOF: Identifying Density-Based Local Outliers
In: Proc. 2nd ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'00)
DOI:10.1145/342009.335388
DBLP:conf/sigmod/BreunigKNS00

elki.outlier.lof.INFLO
W. Jin, A. Tung, J. Han, W. Wang
Ranking outliers using symmetric neighborhood relationship
In: Proc. 10th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining
DOI:10.1007/11731139_68
DBLP:conf/pakdd/JinTHW06

elki.outlier.lof.KDEOS
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel
Generalized Outlier Detection with Flexible Kernel Density Estimates
In: Proc. 14th SIAM International Conference on Data Mining (SDM 2014)
DOI:10.1137/1.9781611973440.63
DBLP:conf/sdm/SchubertZK14

elki.outlier.lof.LDF
L. J. Latecki, A. Lazarevic, D. Pokrajac
Outlier Detection with Kernel Density Functions
In: Machine Learning and Data Mining in Pattern Recognition
DOI:10.1007/978-3-540-73499-4_6
DBLP:conf/mldm/LateckiLP07

elki.outlier.lof.LDOF
K. Zhang, M. Hutter, H. Jin
A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data
In: Proc. 13th Pacific-Asia Conf. Adv. Knowledge Discovery and Data Mining (PAKDD 2009)
DOI:10.1007/978-3-642-01307-2_84
DBLP:conf/pakdd/ZhangHJ09

elki.outlier.lof.LoOP
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
LoOP: Local Outlier Probabilities
In: Proc. 18th Int. Conf. Information and Knowledge Management (CIKM 2009)
DOI:10.1145/1645953.1646195
DBLP:conf/cikm/KriegelKSZ09

elki.outlier.lof.VarianceOfVolume
T. Hu, S. Y. Sung
Detecting pattern-based outliers
In: Pattern Recognition Letters 24(16)
DOI:10.1016/S0167-8655(03)00165-X
DBLP:journals/prl/HuS03

elki.outlier.meta.FeatureBagging
A. Lazarevic, V. Kumar
Feature Bagging for Outlier Detection
In: Proc. 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining
DOI:10.1145/1081870.1081891
DBLP:conf/kdd/LazarevicK05

elki.outlier.OPTICSOF
Markus M. Breunig, Hans-Peter Kriegel, Raymond Ng, Jörg Sander
OPTICS-OF: Identifying Local Outliers
In: Proc. 3rd European Conf. on Principles of Knowledge Discovery and Data Mining (PKDD'99)
DOI:10.1007/978-3-540-48247-5_28
DBLP:conf/pkdd/BreunigKNS99

elki.outlier.SimpleCOP
Arthur Zimek
Application 2: Outlier Detection (Chapter 18)
In: Correlation Clustering

elki.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
F. Chen, C.-T. Lu, A. P. Boedihardjo
GLS-SOD: A Generalized Local Statistical Approach for Spatial Outlier Detection
In: Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
DOI:10.1145/1835804.1835939
DBLP:conf/kdd/ChenLB10

elki.outlier.spatial.CTLuMeanMultipleAttributes,
elki.outlier.spatial.CTLuMedianMultipleAttributes
C.-T. Lu, D. Chen, Y. Kou
Detecting Spatial Outliers with Multiple Attributes
In: Proc. 15th IEEE Int. Conf. Tools with Artificial Intelligence (TAI 2003)
DOI:10.1109/TAI.2003.1250179
DBLP:conf/ictai/LuCK03

elki.outlier.spatial.CTLuMedianAlgorithm
C.-T. Lu, D. Chen, Y. Kou
Algorithms for Spatial Outlier Detection
In: Proc. 3rd IEEE International Conference on Data Mining
DOI:10.1109/ICDM.2003.1250986
DBLP:conf/icdm/LuCK03

elki.outlier.spatial.CTLuMoranScatterplotOutlier,
elki.outlier.spatial.CTLuScatterplotOutlier,
elki.outlier.spatial.CTLuZTestOutlier
S. Shekhar, C.-T. Lu, P. Zhang
A Unified Approach to Detecting Spatial Outliers
In: GeoInformatica 7-2, 2003
DOI:10.1023/A:1023455925009
DBLP:journals/geoinformatica/ShekharLZ03

elki.outlier.spatial.CTLuRandomWalkEC
X. Liu, C.-T. Lu, F. Chen
Spatial outlier detection: random walk based approaches
In: Proc. SIGSPATIAL Int. Conf. Advances in Geographic Information Systems
DOI:10.1145/1869790.1869841
DBLP:conf/gis/LiuLC10

elki.outlier.spatial.SLOM
S. Chawla, P. Sun
SLOM: a new measure for local spatial outliers
In: Knowledge and Information Systems 9(4)
DOI:10.1007/s10115-005-0200-2
DBLP:journals/kais/ChawlaS06

elki.outlier.spatial.SOF
T. Huang, X. Qin
Detecting outliers in spatial database
In: Proc. 3rd International Conference on Image and Graphics
DOI:10.1109/ICIG.2004.53
DBLP:conf/icig/HuangQ04

elki.outlier.spatial.TrimmedMeanApproach
T. Hu, S. Y. Sung
A trimmed mean approach to finding spatial outliers
In: Intelligent Data Analysis 8
Online: http://content.iospress.com/articles/intelligent-data-analysis/ida00153
DBLP:journals/ida/HuS04

elki.outlier.subspace.AbstractAggarwalYuOutlier,
elki.outlier.subspace.AggarwalYuEvolutionary,
elki.outlier.subspace.AggarwalYuNaive
C. C. Aggarwal, P. S. Yu
Outlier detection for high dimensional data
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2001)
DOI:10.1145/375663.375668
DBLP:conf/sigmod/AggarwalY01

elki.outlier.subspace.OutRankS1
E. Müller, I. Assent, U. Steinhausen, T. Seidl
OutRank: ranking outliers in high dimensional data
In: Proc. 24th Int. Conf. on Data Engineering (ICDE) Workshop on Ranking in Databases (DBRank)
DOI:10.1109/ICDEW.2008.4498387
DBLP:conf/icde/MullerASS08

elki.outlier.subspace.OUTRES
E. Müller, M. Schiffer, T. Seidl
Adaptive outlierness for subspace outlier ranking
In: Proc. 19th ACM Int. Conf. on Information and Knowledge Management
DOI:10.1145/1871437.1871690
DBLP:conf/cikm/MullerSS10

elki.outlier.subspace.SOD
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data
In: Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 2009)
DOI:10.1007/978-3-642-01307-2_86
DBLP:conf/pakdd/KriegelKSZ09

elki.outlier.svm.LibSVMOneClassOutlierDetection,
elki.outlier.svm.OCSVM
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C. Williamson
Estimating the support of a high-dimensional distribution
In: Neural computation 13.7
DOI:10.1162/089976601750264965
DBLP:journals/neco/ScholkopfPSSW01

elki.outlier.svm.SVDD
D. M. J. Tax and R. P. W. Duin
Support Vector Data Description
In: Mach. Learn. 54(1): 45-66
DOI:10.1023/B:MACH.0000008084.60811.49
DBLP:journals/ml/TaxD04

elki.projection.BarnesHutTSNE,
elki.projection.NearestNeighborAffinityMatrixBuilder
L. J. P. van der Maaten
Accelerating t-SNE using Tree-Based Algorithms
In: Journal of Machine Learning Research 15
Online: http://dl.acm.org/citation.cfm?id=2697068
DBLP:journals/jmlr/Maaten14

elki.projection.GaussianAffinityMatrixBuilder,
elki.projection.PerplexityAffinityMatrixBuilder,
elki.projection.SNE
G. Hinton, S. Roweis
Stochastic Neighbor Embedding
In: Advances in Neural Information Processing Systems 15
Online: http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding
DBLP:conf/nips/HintonR02

elki.projection.TSNE
L. J. P. van der Maaten, G. E. Hinton
Visualizing High-Dimensional Data Using t-SNE
In: Journal of Machine Learning Research 9
Online: http://www.jmlr.org/papers/v9/vandermaaten08a.html

elki.result.KMLOutputHandler
Erich Achtert, Ahmed Hettab, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek
Spatial Outlier Detection: Data, Algorithms, Visualizations
In: Proc. 12th Int. Symp. Spatial and Temporal Databases (SSTD 2011)
DOI:10.1007/978-3-642-22922-0_41
DBLP:conf/ssd/AchtertHKSZ11

elki.timeseries.OfflineChangePointDetectionAlgorithm
E. S. Page
On Problems in which a Change in a Parameter Occurs at an Unknown Point
In: Biometrika Vol. 44
DOI:10.2307/2333258

elki.timeseries.OfflineChangePointDetectionAlgorithm
M. Basseville, I. V. Nikiforov
Section 2.6: Off-line Change Detection
In: Detection of Abrupt Changes - Theory and Application
Online: http://people.irisa.fr/Michele.Basseville/kniga/kniga.pdf

elki.timeseries.OfflineChangePointDetectionAlgorithm
D. Picard
**Testing and Estimating Change-Points in Time Series **
In: Advances in Applied Probability Vol. 17
DOI:10.2307/1427090

elki.timeseries.SigniTrendChangeDetection
Erich Schubert, Michael Weiler, Hans-Peter Kriegel
Signi-Trend: scalable detection of emerging topics in textual streams by hashed significance thresholds
In: Proc. 20th ACM SIGKDD international conference on Knowledge discovery and data mining
DOI:10.1145/2623330.2623740
DBLP:conf/kdd/SchubertWK14

elki.utilities.datastructures.KuhnMunkres
J. Munkres
Algorithms for the Assignment and Transportation Problems
In: Journal of the Society for Industrial and Applied Mathematics 5(1)
DOI:10.1137/0105003

elki.utilities.datastructures.KuhnMunkres
H. W. Kuhn
The Hungarian method for the assignment problem
In: Naval Research Logistics Quarterly 2
DOI:10.1002/nav.3800020109

elki.utilities.datastructures.KuhnMunkresStern
K. L. Stern
The Hungarian Algorithm for the Assignment Problem
Online: http://software-and-algorithms.blogspot.com/2012/09/the-hungarian-algorithm-for-assignment.html

elki.utilities.datastructures.KuhnMunkresWong
J. K. Wong
A new implementation of an algorithm for the optimal assignment problem: An improved version of Munkres' algorithm
In: BIT Numerical Mathematics 19(3)
DOI:10.1007/BF01930994

elki.utilities.datastructures.unionfind.WeightedQuickUnionInteger,
elki.utilities.datastructures.unionfind.WeightedQuickUnionRangeDBIDs,
elki.utilities.datastructures.unionfind.WeightedQuickUnionStaticDBIDs
R. Sedgewick
Algorithms in C, Parts 1-4
DBLP:books/daglib/0004943

elki.utilities.random.FastNonThreadsafeRandom
D. Lemire
Fast Random Integer Generation in an Interval
In: ACM Trans. Model. Comput. Simul. 29(1)
DOI:10.1145/3230636
DBLP:journals/tomacs/Lemire19

elki.utilities.random.FastNonThreadsafeRandom,
elki.utilities.random.Xoroshiro128NonThreadsafeRandom,
elki.utilities.random.XorShift1024NonThreadsafeRandom,
elki.utilities.random.XorShift64NonThreadsafeRandom
D. Lemire
Fast random shuffling
In: Daniel Lemire's blog
Online: http://lemire.me/blog/2016/06/30/fast-random-shuffling/

elki.utilities.random.Xoroshiro128NonThreadsafeRandom
D. Blackman, S. Vigna
xoroshiro+ / xorshift* / xorshift+ generators and the PRNG shootout
Online: http://xoroshiro.di.unimi.it/

elki.utilities.random.XorShift1024NonThreadsafeRandom,
elki.utilities.random.XorShift64NonThreadsafeRandom
S. Vigna
An experimental exploration of Marsaglia's xorshift generators, scrambled
Online: http://vigna.di.unimi.it/ftp/papers/xorshift.pdf

elki.utilities.scaling.outlier.COPOutlierScaling,
elki.utilities.scaling.outlier.MinusLogGammaScaling,
elki.utilities.scaling.outlier.MinusLogStandardDeviationScaling,
elki.utilities.scaling.outlier.MultiplicativeInverseScaling,
elki.utilities.scaling.outlier.OutlierGammaScaling,
elki.utilities.scaling.outlier.OutlierMinusLogScaling,
elki.utilities.scaling.outlier.SqrtStandardDeviationScaling,
elki.utilities.scaling.outlier.StandardDeviationScaling
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Interpreting and Unifying Outlier Scores
In: Proc. 11th SIAM International Conference on Data Mining (SDM 2011)
DOI:10.1137/1.9781611972818.2
DBLP:conf/sdm/KriegelKSZ11

elki.utilities.scaling.outlier.HeDESNormalizationOutlierScaling
H. V. Nguyen, H. H. Ang, V. Gopalkrishnan
Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces
In: Proc. 15th Int. Conf. Database Systems for Advanced Applications (DASFAA 2010)
DOI:10.1007/978-3-642-12026-8_29
DBLP:conf/dasfaa/VuAG10

elki.utilities.scaling.outlier.MixtureModelOutlierScaling,
elki.utilities.scaling.outlier.SigmoidOutlierScaling
J. Gao, P.-N. Tan
Converting Output Scores from Outlier Detection Algorithms into Probability Estimates
In: Proc. Sixth International Conference on Data Mining, 2006. ICDM'06.
DOI:10.1109/ICDM.2006.43
DBLP:conf/icdm/GaoT06

elki.visualization.projector.ParallelPlotProjector
A. Inselberg
Parallel Coordinates. Visual Multidimensional Geometry and Its Applications
DOI:10.1007/978-0-387-68628-8

elki.visualization.visualizers.scatterplot.density.DensityEstimationOverlay
D. W. Scott
Multivariate density estimation: Theory, Practice, and Visualization
In: Multivariate Density Estimation: Theory, Practice, and Visualization
DOI:10.1002/9780470316849

elki.visualization.visualizers.scatterplot.outlier.BubbleVisualization
Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius Wojdanowski, Arthur Zimek
Visual Evaluation of Outlier Detection Models
In: Proc. 15th Int. Conf. on Database Systems for Advanced Applications (DASFAA 2010)
DOI:10.1007/978-3-642-12098-5_34
DBLP:conf/dasfaa/AchtertKRSWZ10