forked from RocaVincent/iguane_harmonization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
223 lines (189 loc) · 8.6 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from subprocess import run
from tempfile import gettempdir, mkdtemp
from uuid import uuid4
import nibabel as nib
import numpy as np
from harmonization.model_architectures import Generator
from tensorflow import convert_to_tensor
from tensorflow.config import list_physical_devices
from HD_BET.run import run_hd_bet
from os import remove, symlink
from shutil import rmtree
from multiprocessing import Pool
if len(list_physical_devices('GPU'))>0:
from tensorflow.keras import mixed_precision
mixed_precision.set_global_policy("mixed_float16")
TMP_DIR = gettempdir()
TEMPLATE_PATH = 'preprocessing/MNI152_T1_1mm_brain.nii.gz'
def tmp_unique_path(extension='.nii.gz'):
return f"{TMP_DIR}/{uuid4().hex}{extension}"
def run_cmd(cmd):
return run(cmd.split(' '), capture_output=True)
def indices_crop(data):
# count number of zeros
d1_1=0
while d1_1<data.shape[0] and np.count_nonzero(data[d1_1,:,:])==0: d1_1+=1
d1_2=0
while d1_2<data.shape[0] and np.count_nonzero(data[-d1_2-1,:,:])==0: d1_2+=1
d2_1=0
while d2_1<data.shape[1] and np.count_nonzero(data[:,d2_1,:])==0: d2_1+=1
d2_2=0
while d2_2<data.shape[1] and np.count_nonzero(data[:,-d2_2-1,:])==0: d2_2+=1
d3_1=0
while d3_1<data.shape[1] and np.count_nonzero(data[:,:,d3_1])==0: d3_1+=1
d3_2=0
while d3_2<data.shape[1] and np.count_nonzero(data[:,:,-d3_2-1])==0: d3_2+=1
# determine cropping
if d1_1+d1_2 >= 22:
if d1_1<11: xmin = d1_1
elif d1_2<11: xmin = 182-160-d1_2
else: xmin = 11
xsize = 160
else: xmin, xsize = 3,176
if d2_1+d2_2 >= 26:
if d2_1<13: ymin = d2_1
elif d2_2<13: ymin = 218-192-d2_2
else: ymin = 13
ysize = 192
else: ymin, ysize = 5,208
if d3_1+d3_2 >= 22:
if d3_1<11: zmin = d3_1
elif d3_2<11: zmin = 182-160-d3_2
else: zmin = 11
zsize = 160
else: zmin, zsize = 3,176
return xmin, xsize, ymin, ysize, zmin, zsize
def run_singleproc(in_mri, out_mri, hd_bet_cpu):
reorient_path = tmp_unique_path()
returned = run_cmd(f"fslreorient2std {in_mri} {reorient_path}")
if returned.stderr:
print(f"Problem fslreorient2std : {returned.stderr.decode('utf-8')}")
return False
brain_native = tmp_unique_path()
if hd_bet_cpu: run_hd_bet(reorient_path, brain_native, bet=True, device='cpu', mode='fast', do_tta=False)
else: run_hd_bet(reorient_path, brain_native, bet=True)
mask_native = brain_native[:-7]+'_mask.nii.gz'
n4native = tmp_unique_path()
returned = run_cmd(f"N4BiasFieldCorrection -i {brain_native} -x {mask_native} -o {n4native}")
if returned.returncode != 0:
print("Problem with N4BiasFieldCorrection")
return False
n4mni = tmp_unique_path()
mni_mat = tmp_unique_path('.mat')
returned = run_cmd(f"flirt -in {n4native} -ref {TEMPLATE_PATH} -omat {mni_mat} -interp trilinear -dof 6 -out {n4mni}")
if returned.stderr:
print(f"Problem flirt : {returned.stderr.decode('utf-8')}")
return False
mask_mni = tmp_unique_path()
returned = run_cmd(f"flirt -in {mask_native} -ref {TEMPLATE_PATH} -out {mask_mni} -init {mni_mat} -applyxfm -interp nearestneighbour")
if returned.stderr:
print(f"Problem flirt : {returned.stderr.decode('utf-8')}")
return False
median_mni = tmp_unique_path()
mri = nib.load(n4mni)
data = mri.get_fdata()
mask = nib.load(mask_mni).get_fdata() > 0
med = np.median(data[mask])
data = data/med
mri = nib.Nifti1Image(data, affine=mri.affine, header=mri.header)
nib.save(mri, median_mni)
xmin, xsize, ymin, ysize, zmin, zsize = indices_crop(data)
median_crop = tmp_unique_path()
returned = run_cmd(f"fslroi {median_mni} {median_crop} {xmin} {xsize} {ymin} {ysize} {zmin} {zsize}")
if returned.stderr:
print(f"Problem fslroi : {returned.stderr.decode('utf-8')}")
return False
generator = Generator()
generator.load_weights('harmonization/iguane_weights.h5')
mri = nib.load(median_crop)
data = mri.get_fdata()-1
mask = data>-1
data[~mask] = 0
data = np.expand_dims(data, axis=(0,4))
t = convert_to_tensor(data, dtype='float32')
data = generator(t, training=False).numpy().squeeze()
data = (data+1) * 500
data[~mask] = 0
data = np.maximum(data, 0)
mri = nib.Nifti1Image(data, affine=mri.affine, header=mri.header)
nib.save(mri, out_mri)
remove(reorient_path)
remove(brain_native)
remove(mask_native)
remove(n4native)
remove(n4mni)
remove(mni_mat)
remove(mask_mni)
remove(median_mni)
remove(median_crop)
def reorient(directory, id_):
returned = run_cmd(f"fslreorient2std {directory}/base_{id_}.nii.gz {directory}/reorient_{id_}.nii.gz")
if returned.stderr:
print(f"Problem fslreorient2std for entry number {id_} : {returned.stderr.decode('utf-8')}")
return False
return True
def n4_flirt_median_crop(directory, id_):
returned = run_cmd(f"N4BiasFieldCorrection -i {directory}/brainNative_{id_}.nii.gz -x {directory}/brainNative_{id_}_mask.nii.gz -o {directory}/n4native_{id_}.nii.gz")
if returned.returncode!=0:
print(f"Problem N4BiasField for entry number {id_}")
return False
returned = run_cmd(f"flirt -in {directory}/n4native_{id_}.nii.gz -ref {TEMPLATE_PATH} -omat {directory}/flirtMat_{id_}.mat -interp trilinear -dof 6 -out {directory}/n4mni_{id_}.nii.gz")
if returned.stderr:
print(f"Problem flirt for entry number {id_} : {returned.stderr.decode('utf-8')}")
return False
returned = run_cmd(f"flirt -in {directory}/brainNative_{id_}_mask.nii.gz -ref {TEMPLATE_PATH} -out {directory}/maskMni_{id_}.nii.gz -init {directory}/flirtMat_{id_}.mat -applyxfm -interp nearestneighbour")
if returned.stderr:
print(f"Problem flirt apply transform for entry number {id_} : {returned.stderr.decode('utf-8')}")
return False
mri = nib.load(f"{directory}/n4mni_{id_}.nii.gz")
data = mri.get_fdata()
mask = nib.load(f"{directory}/maskMni_{id_}.nii.gz").get_fdata() > 0
median = np.median(data[mask])
data = data/median
mri = nib.Nifti1Image(data, affine=mri.affine, header=mri.header)
nib.save(mri, f"{directory}/medianNorm_{id_}.nii.gz")
xmin, xsize, ymin, ysize, zmin, zsize = indices_crop(data)
returned = run_cmd(f"fslroi {directory}/medianNorm_{id_}.nii.gz {directory}/crop_{id_}.nii.gz {xmin} {xsize} {ymin} {ysize} {zmin} {zsize}")
if returned.stderr:
print(f"Problem fslroi apply transform for entry number {id_} : {returned.stderr.decode('utf-8')}")
return False
return True
def run_multiproc(in_paths, out_paths, n_procs, hd_bet_cpu):
tmp_dir = mkdtemp()
ids = range(1, len(in_paths)+1)
bases = [f"{tmp_dir}/base_{id_}.nii.gz" for id_ in ids]
for i,id_ in enumerate(ids): symlink(in_paths[i], f"{tmp_dir}/base_{id_}.nii.gz")
print("reorientation of MR images...")
with Pool(n_procs) as pool:
flags = pool.starmap(reorient, [(tmp_dir,id_) for id_ in ids])
ids = [ids[i] for i in range(len(ids)) if flags[i]]
print('\nHD-BET brain extractions...')
hd_bet_in = [f"{tmp_dir}/reorient_{id_}.nii.gz" for id_ in ids]
hd_bet_out = [f"{tmp_dir}/brainNative_{id_}.nii.gz" for id_ in ids]
if hd_bet_cpu: run_hd_bet(hd_bet_in, hd_bet_out, bet=True, device='cpu', mode='fast', do_tta=False)
else: run_hd_bet(hd_bet_in, hd_bet_out, bet=True)
print('\nBias field correction, registration, median normalization and cropping...')
with Pool(n_procs) as pool:
flags = pool.starmap(n4_flirt_median_crop, [(tmp_dir, id_) for id_ in ids])
ids = [ids[i] for i in range(len(ids)) if flags[i]]
print('IGUANe harmonization...')
generator = Generator()
generator.load_weights('harmonization/iguane_weights.h5')
for i,id_ in enumerate(ids, start=1):
print(f"\tHarmonizing image {i}/{len(ids)}...", end='\r')
mri = nib.load(f"{tmp_dir}/crop_{id_}.nii.gz")
data = mri.get_fdata()-1
mask = data>-1
data[~mask] = 0
data = np.expand_dims(data, axis=(0,4))
t = convert_to_tensor(data, dtype='float32')
data = generator(t, training=False).numpy().squeeze()
data = (data+1) * 500
data[~mask] = 0
data = np.maximum(data, 0)
mri = nib.Nifti1Image(data, affine=mri.affine, header=mri.header)
try: nib.save(mri, out_paths[id_-1])
except FileNotFoundError:
print(f"Problem saving {out_paths[id_-1]}")
print('Deletion of temporary files... ')
rmtree(tmp_dir)