-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_line_filtering.py
128 lines (103 loc) · 5.36 KB
/
run_line_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
from pathlib import Path
import math
import time
import numpy as np
import cv2
import strandtools
import utils
from tqdm import trange
def main():
parser = argparse.ArgumentParser("3D Line Filtering")
parser.add_argument("input", type=Path, help="Path to the input directory of multi-view data")
parser.add_argument("output", type=Path, help="Filename of the output ply file")
parser.add_argument("--num_neighbors", type=int, default=6)
parser.add_argument("--num_least_consisten_neigbor", type=int, default=2)
parser.add_argument("-tp", "--thresh_position", type=float, default=2.7)
parser.add_argument("-td", "--thresh_angle", type=float, default=10.0, help="degree")
parser.add_argument("--ratio", type=float, default=1.0)
parser.add_argument("--imshow", action="store_true")
args = parser.parse_args()
np.random.seed(0)
if args.output.suffix != ".ply":
raise ValueError(f"Output must be a ply file, but got {args.output}")
multiviewdata = utils.read_multiview(args.input, read_images=False, verbose=False)
info = ""
info += f"Datetime: {time.strftime('%Y/%m/%d %H:%M:%S')}\n"
info += f"Input: {args.input}\n"
info += f"Output: {args.output}\n"
info += f"Number of views: {len(multiviewdata)}\n"
info += f"Number of neighbors: {args.num_neighbors}\n"
info += f"Number of least consistent neighbors: {args.num_least_consisten_neigbor}\n"
info += f"Threshold of position difference: {args.thresh_position}\n"
info += f"Threshold of angle difference (degree): {args.thresh_angle}\n"
info += f"Ratio of points: {args.ratio}\n"
print("Start 3D line filtering")
print(info)
apply_filtering = args.thresh_position != np.inf or args.thresh_angle != np.inf
num_points_origin_list = []
num_points_filtered_list = []
points_list = []
directions_list = []
progress_bar = trange(len(multiviewdata))
for view_i in progress_bar:
progress_bar.set_description(f"View {view_i}")
reference_view = utils.read_multiview(args.input, view_select=[view_i])[0]
neighbor_indices = multiviewdata.get_neighbor_index_vector(view_i, args.num_neighbors)
if apply_filtering:
width, height = reference_view.size()
imgs_position_diff = np.empty((args.num_neighbors, height, width), dtype=np.float32)
imgs_angle_diff = np.empty((args.num_neighbors, height, width), dtype=np.float32)
for i, neighbor_view_i in enumerate(neighbor_indices):
# Read a neighbor view
neighbor_views = utils.read_multiview(args.input, view_select=[neighbor_view_i])[0]
# Compute difference between reference view and neighbor view in terms of position and angle
img_position_diff, img_angle_diff = strandtools.eval_consisntency(reference_view, neighbor_views)
imgs_position_diff[i] = img_position_diff
imgs_angle_diff[i] = img_angle_diff
# Check consistency
imgs_position_valid = imgs_position_diff < args.thresh_position
imgs_angle_valid = imgs_angle_diff < math.radians(args.thresh_angle)
imgs_line_valid = np.bitwise_and(imgs_position_valid, imgs_angle_valid)
img_line_valid = np.sum(imgs_line_valid, axis=0) >= args.num_least_consisten_neigbor
# Update mask
img_mask = reference_view.img_mask > 0
img_mask_new = np.bitwise_and(img_mask, img_line_valid)
reference_view.img_mask = img_mask_new.astype(np.uint8) * 255
# Count number of points
num_points_origin = np.sum(img_mask)
num_points_filtered = np.sum(img_mask_new)
num_points_origin_list.append(num_points_origin)
num_points_filtered_list.append(num_points_filtered)
# Get points and directions
points, directions = reference_view.getDirectionalPoint()
# Randomly select points
if 0 < args.ratio < 1.0:
num_points = len(points)
num_sample = int(num_points * args.ratio)
indices = np.random.choice(num_points, num_sample, replace=False)
points = points[indices]
directions = directions[indices]
points_list.append(points)
directions_list.append(directions)
# Show mask image
if args.imshow:
img_mask = reference_view.img_mask > 0
cv2.imshow(f"img_mask", img_mask.astype(np.uint8) * 255)
key = cv2.waitKey(1)
if key == ord("q"):
break
points = np.concatenate(points_list, axis=0)
directions = np.concatenate(directions_list, axis=0)
colors = (np.abs(directions) * 255).astype(np.uint8)
total_num_points_origin = np.sum(num_points_origin_list)
total_num_points_filtered = np.sum(num_points_filtered_list)
print(f"Number of points (origin): {total_num_points_origin}")
print(f"Number of points (filtered): {total_num_points_filtered}")
print(f"Ratio of remained points: {total_num_points_filtered / total_num_points_origin * 100:0.2f} [%]")
print(f"Ratio of removed points: {100.0 - total_num_points_filtered / total_num_points_origin * 100:0.2f} [%]")
print(f"Number of points: {len(points)}")
print("Export ply file")
utils.write_ply(args.output, points, colors, directions, comment=info)
if __name__ == "__main__":
main()