-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatched_flattened_indices.py
62 lines (52 loc) · 2.93 KB
/
batched_flattened_indices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import dataclasses
from typing import List, Union, Optional, Tuple, Dict, Set, Any, final
from .misc import CollateData
from .tensors_data_class_base import TensorsDataClass
from .mixins import HasTargetIndexingGroupMixin, TensorDataClassWithSingleIndicesTensorMixin
__all__ = ['BatchedFlattenedIndicesTensor']
@final
@dataclasses.dataclass
class BatchedFlattenedIndicesTensor(
HasTargetIndexingGroupMixin,
TensorDataClassWithSingleIndicesTensorMixin,
TensorsDataClass):
within_example_indexing_start: int = dataclasses.field(default=0)
@classmethod
def get_management_fields(cls) -> Tuple[str, ...]:
return super(BatchedFlattenedIndicesTensor, cls).get_management_fields() + \
('within_example_indexing_start', )
@classmethod
def get_indices_fields(cls):
return super(BatchedFlattenedIndicesTensor, cls).get_data_fields()
@classmethod
def _collate_first_pass(
cls, inputs: List['BatchedFlattenedIndicesTensor'],
collate_data: CollateData) \
-> 'BatchedFlattenedIndicesTensor':
assert all(inp.within_example_indexing_start == inputs[0].within_example_indexing_start for inp in inputs)
collated = super(BatchedFlattenedIndicesTensor, cls)._collate_first_pass(
inputs, collate_data=collate_data)
collated.tgt_indexing_group = inputs[0].tgt_indexing_group
collated.within_example_indexing_start = inputs[0].within_example_indexing_start
return collated
def post_collate_indices_fix(self, parents: Tuple['TensorsDataClass', ...], fields_path: Tuple[str, ...],
collate_data: CollateData):
if self.tgt_indexing_group is None:
raise ValueError(f'`{self.__class__.__name__}` must have an `tgt_indexing_group`.')
addressed_flattened_tensor = self.find_addressed_batched_flattened_tensor(parents[0])
if addressed_flattened_tensor is None:
raise ValueError(
f'Not found field in tensors data class which is addressable '
f'via index group `{self.tgt_indexing_group}`.')
for field in self.get_indices_fields():
original_indices = getattr(self, field.name)
assert addressed_flattened_tensor.batched_index_offset_additive_fix_per_example.size(0) == \
addressed_flattened_tensor.nr_examples
assert addressed_flattened_tensor.nr_examples == self.nr_examples
assert self.nr_examples == original_indices.size(0)
offsets_fixes = torch.where(
original_indices < self.within_example_indexing_start,
torch.zeros((1, ), dtype=original_indices.dtype, device=original_indices.device),
addressed_flattened_tensor.batched_index_offset_additive_fix_per_example.unsqueeze(-1).expand(original_indices.size()))
setattr(self, field.name, original_indices + offsets_fixes)