-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path2gcomp2.Rmd
568 lines (415 loc) · 16.5 KB
/
2gcomp2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# G-computation using ML
```{r setup01gm, include=FALSE}
require(knitr)
require(glmnet)
require(kableExtra)
require(dplyr)
require(xgboost)
require(caret)
require(SuperLearner)
options(knitr.kable.NA = '')
cachex=TRUE
```
```{block, type='rmdcomment'}
G-computation is highly sensitive to **model misspecification**; and when model is **not correctly specified**, result is subject to bias.
```
- Therefore, it can be a good idea to use **machine learning** methods, that are more flexible, than parametric methods to estimate the treatment effect.
- Although ML methods are powerful in point estimation, the **coverage probabilities** are usually poor when more flexible methods are used, if inference is one of the goals. Hence we are focusing on **point estimation** here.
## G-comp using Regression tree
```{r reg2sl, cache=cachex, echo = TRUE}
# Read the data saved at the last chapter
ObsData <- readRDS(file = "data/rhcAnalytic.RDS")
baselinevars <- names(dplyr::select(ObsData, !A))
out.formula <- as.formula(paste("Y~ A +",
paste(baselinevars,
collapse = "+")))
```
### A tree based algorithm
XGBoost is a fast version of gradient boosting algorithm. Let us use this one to fit the data first. We follow the exact same procedure that we followed in the parametric G-computation setting.
```{r ML1, cache=cachex, echo = TRUE, warning= FALSE}
require(xgboost)
Y <-ObsData$Y
ObsData.matrix <- model.matrix(out.formula, data = ObsData)
```
```{r ML1fit, cache=cachex, echo = TRUE}
fit3 <- xgboost(data = ObsData.matrix,
label = Y,
max.depth = 10,
eta = 1,
nthread = 15,
nrounds = 100,
alpha = 0.5,
objective = "reg:squarederror",
verbose = 0)
```
```{r ML1fit2, cache=cachex, echo = TRUE}
predY <- predict(fit3, newdata = ObsData.matrix)
plot(density(Y),
col = "red",
main = "Predicted and observed Y",
xlim = c(1,100))
legend("topright",
c("Y","Predicted Y"),
lty = c(1,2),
col = c("red","blue"))
lines(density(predY), col = "blue", lty = 2)
caret::RMSE(predY,Y)
```
- What we have done here is we have used the `ObsData.matrix` data to train our model, and we have used `newdata = ObsData.matrix` to obtain prediction.
```{block, type='rmdcomment'}
When we use same **data** for training and obtaining prediction, often the predictions are highly optimistic (RMSE is unrealistically low for future predictions), and we call this a **over-fitting** problem.
```
- One way to deal with this problem is called Cross-validation.
### Cross-validation
Cross-validation means
- splitting the data into
- training data
- testing data
```{block, type='rmdcomment'}
In each iteration: (1) Fitting models in training data (2) obtaining prediction $\hat{Y}$ in test data (3) obtain all RMSEs from each iteration, and (4) average all RMSEs.
```
```{r cvpic, echo = FALSE, out.width = "650px", fig.cap="Cross validation from [wiki](https://en.wikipedia.org/wiki/Cross-validation_(statistics)); training data = used for building model; test data = used for prediction from the model that was built using training data; each iteration = fold"}
knitr::include_graphics("images/CV.png")
```
#### Cross-validation using caret
We use `caret` package to do cross-validation.
```{block, type='rmdcomment'}
`caret` is a general framework package for machine learning that can also incorporate other ML approaches such as `xgboost`.
```
```{r ML1car, cache=cachex, echo = TRUE}
require(caret)
set.seed(123)
X_ObsData.matrix <- xgb.DMatrix(ObsData.matrix)
Y_ObsData <- ObsData$Y
```
Below we define $K = 3$ for cross-validation. Ideally for a sample size close to $n=5,000$, we would select $K=10$, but for learning / demonstration / computational time-saving purposes, we just use $K = 3$.
```{r ML1carx, cache=cachex, echo = TRUE}
xgb_trcontrol = trainControl(
method = "cv",
number = 3,
allowParallel = TRUE,
verboseIter = FALSE,
returnData = FALSE
)
```
#### Fine tuning
```{block, type='rmdcomment'}
One of the advantages of `caret` framework is that, it also allows checking the impact of various parameters (can do **fine tuning**).
```
For example,
- for interaction depth, we previously use `max.depth = 10`. That means $covariate^{10}$ polynomial.
- We could also check if other interaction depth choices (such as $covariate^{2}$ or $covariate^{4}$) would be better in terms of honest predictions.
```{r ML1carxy, cache=cachex, echo = TRUE}
xgbGrid <- expand.grid(
nrounds = 100,
max_depth = seq(2,10,2),
eta = 1,
gamma = 0,
colsample_bytree = 0.1,
min_child_weight = 2,
subsample = 0.5
)
```
#### Fit model with CV
once we set
- resampling or cross-validation settings
- parameter grid
we can fit the model:
```{r ML1car2, cache=cachex, echo = TRUE}
fit.xgb <- train(
X_ObsData.matrix, Y_ObsData,
trControl = xgb_trcontrol,
method = "xgbTree",
tuneGrid = xgbGrid,
verbose = FALSE
)
fit.xgb
```
Based on the loss function (say, RMSE) it automatically chose the best tuning parameter set:
```{r ML1car3, cache=cachex, echo = TRUE}
fit.xgb$bestTune$max_depth
```
```{r}
predY <- predict(fit.xgb, newdata = ObsData.matrix)
plot(density(Y),
col = "red",
main = "Predicted and observed Y",
xlim = c(1,100))
legend("topright",
c("Y","Predicted Y"),
lty = c(1,2),
col = c("red","blue"))
lines(density(predY), col = "blue", lty = 2)
caret::RMSE(predY,Y)
```
### G-comp step 2: Extract outcome prediction as if everyone is treated
```{r ML12, cache=cachex, echo = TRUE}
ObsData.matrix.A1 <- ObsData.matrix
ObsData.matrix.A1[,"A"] <- 1
ObsData$Pred.Y1 <- predict(fit.xgb, newdata = ObsData.matrix.A1)
summary(ObsData$Pred.Y1)
```
### G-comp step 3: Extract outcome prediction as if everyone is untreated
```{r ML13, cache=cachex, echo = TRUE}
ObsData.matrix.A0 <- ObsData.matrix
ObsData.matrix.A0[,"A"] <- 0
ObsData$Pred.Y0 <- predict(fit.xgb, newdata = ObsData.matrix.A0)
summary(ObsData$Pred.Y0)
```
### G-comp step 4: Treatment effect estimate
```{r ML13b, cache=cachex, echo = TRUE}
ObsData$Pred.TE <- ObsData$Pred.Y1 - ObsData$Pred.Y0
```
Mean value of predicted treatment effect
```{r reg2acnx1b, cache=cachex, echo = TRUE}
TE1 <- mean(ObsData$Pred.TE)
TE1
summary(ObsData$Pred.TE)
```
Notice that the mean is slightly different than the parametric G-computation method.
## G-comp using regularized methods
### A regularized model
```{block, type='rmdcomment'}
LASSO is a regularized method. One of the uses of these methods is "variable selection" or addressing concerns of multicollinearity.
```
Let us use this method to fit our data.
- We are again using cross-validation here, and we chose $K=3$.
```{r ML1r, cache=cachex, echo = TRUE, warning=FALSE}
require(glmnet)
Y <-ObsData$Y
ObsData.matrix <- model.matrix(out.formula, data = ObsData)
fit4 <- cv.glmnet(x = ObsData.matrix,
y = Y,
alpha = 1,
nfolds = 3,
relax=TRUE)
```
### G-comp step 2: Extract outcome prediction as if everyone is treated
```{r ML12r, cache=cachex, echo = TRUE}
ObsData.matrix.A1 <- ObsData.matrix
ObsData.matrix.A1[,"A"] <- 1
ObsData$Pred.Y1 <- predict(fit4, newx = ObsData.matrix.A1,
s = "lambda.min")
summary(ObsData$Pred.Y1)
```
### G-comp step 3: Extract outcome prediction as if everyone is untreated
```{r ML13r, cache=cachex, echo = TRUE}
ObsData.matrix.A0 <- ObsData.matrix
ObsData.matrix.A0[,"A"] <- 0
ObsData$Pred.Y0 <- predict(fit4, newx = ObsData.matrix.A0,
s = "lambda.min")
summary(ObsData$Pred.Y0)
```
### G-comp step 4: Treatment effect estimate
```{r ML13br, cache=cachex, echo = TRUE}
ObsData$Pred.TE <- ObsData$Pred.Y1 - ObsData$Pred.Y0
```
Mean value of predicted treatment effect
```{r reg2acnx1br, cache=cachex, echo = TRUE}
TE2 <- mean(ObsData$Pred.TE)
TE2
summary(ObsData$Pred.TE)
```
Notice that the mean is very similar to the parametric G-computation method.
## G-comp using SuperLearner
```{block, type='rmdcomment'}
SuperLearner is an ensemble ML technique, that uses **cross-validation** to find a weighted combination of estimates provided by different **candidate learners** (that help predict).
```
- There exists many candidate learners. Here we are using a combination of
- linear regression
- Regularized regression (lasso)
- gradient boosting (tree based)
### Steps
| | |
|-|-|
|Step 1| Identify candidate learners|
|Step 2| Choose Cross-validation K|
|Step 3| Select loss function for meta learner|
|Step 4| Find SL prediction: (1) Discrete SL (2) Ensamble SL |
#### Identify candidate learners
- Choose variety of candidate learners
- parametric (linear or logistic regression)
- regularized (LASSO, ridge, elasticnet)
- stepwise
- non-parametric
- transformation (SVM, NN)
- tree based (bagging, boosting)
- smoothing or spline (gam)
- tune the candidate learners for better performance
- tree depth
- tune regularization parameters
- variable selection
```{r ML1s00, cache=cachex, echo = TRUE}
SL.library.chosen=c("SL.glm", "SL.glmnet", "SL.xgboost")
```
**SuperLearner** is an ensemble learning method. Let us use this one to fit the data first.
#### Choose Cross-validation K
To combat against optimism, we use cross-validation. SuperLearner first **splits** the data according to chosen $K$ fold for the cross-validation.
```{r ML1s000, cache=cachex, echo = TRUE}
cvControl.chosen = list(V = 3)
```
#### Select loss function for meta learner and estimate risk
```{block, type='rmdcomment'}
The goal is to minimize the estimated risk (i.e., minimize the difference of $Y$ and $\hat{Y}$) that comes out of a model.
```
<!---
For each fold, estimate a **measure of performance** (could be RMSE) in test sets based on models that was built using training sets
$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^n (Y - \hat{Y})^2}$ for continuous $Y$
- we obtain risk estimate in each fold (from test data)
- we average all the estimates risks
---->
We can chose a (non-negative) least squares loss function for the meta learner (explained below):
```{r ML1s0, cache=cachex, echo = TRUE}
loss.chosen = "method.NNLS"
```
#### Find SL prediction
We first fit the super learner:
```{r ML1s, cache=cachex, echo = TRUE, results='hide', warning = FALSE}
require(SuperLearner)
ObsData.noY <- dplyr::select(ObsData, !Y)
fit.sl <- SuperLearner(Y=ObsData$Y,
X=ObsData.noY,
cvControl = cvControl.chosen,
SL.library=SL.library.chosen,
method=loss.chosen,
family="gaussian")
```
We can also obtain the predictions from each candidate learners.
```{r ML12stest0, cache=cachex, echo = TRUE}
all.pred <- predict(fit.sl, type = "response")
Yhat <- all.pred$library.predict
head(Yhat)
```
We can obtain the $K$-fold cross-validated risk estimates for each candidate learners.
```{r ML12stestrisk, cache=cachex, echo = TRUE}
fit.sl$cvRisk
```
Once we have the performance measures and predictions from candidate learners, we could go one of **two routes** here
##### Discrete SL
```{block, type='rmdcomment'}
Get measure of performance from all folds are averaged, and choose the **best** one. The prediction from the chosen learners are then used.
```
`glmnet` has the lowest cross-validated risk
```{r ML12stest, cache=cachex, echo = TRUE}
lowest.risk.learner <- names(which(
fit.sl$cvRisk == min(fit.sl$cvRisk)))
lowest.risk.learner
as.matrix(head(Yhat[,lowest.risk.learner]),
ncol=1)
```
##### Ensamble SL
Here are the first 6 rows from the candidate learner predictions:
```{r ML12stestx, cache=cachex, echo = TRUE}
head(Yhat)
```
```{block, type='rmdcomment'}
fit a **meta learner** (optimal weighted combination; below is a simplified description)
```
- using
- linear regression (without intercept, but could produce -ve coefs) or
- preferably non-negative least squares for
$Y_{obs}$ $\sim$ $\hat{Y}_{SL.glm}$ + $\hat{Y}_{SL.glmnet}$ + $\hat{Y}_{SL.xgboost}$.
- Obtain the regression coefs $\mathbf{\beta}$ = ($\beta_{SL.glm}$, $\beta_{SL.glmnet}$, $\beta_{SL.xgboost}$) for each $\hat{Y}$,
- scale them to 1
- $\mathbf{\beta_{scaled}}$ = $\mathbf{\beta}$ / $\sum_{i=1}^3{\mathbf{\beta}}$;
- so that the sum of scaled coefs = 1
- Scaled coefficients $\mathbf{\beta_{scaled}}$ represents the **value / importance of the corresponding candidate learner**.
```{r ML12stestxreg, cache=cachex, echo = TRUE, include= FALSE}
# fit.meta <- lm(Y ~ 0 + Yhat)
# lm produces -ve
# non-negative least squares (NNLS)
fit.meta <- nnls::nnls(A=Yhat,b=Y)
# alternate would be to use glmnet
# fit.meta <- glmnet(X, Yhat,
# lambda = 0,
# lower.limits = 0,
# intercept = FALSE)
fit.meta
coefs <- coef(fit.meta)
coefs
scaled.coefs <- abs(coefs)/sum(abs(coefs))
scaled.coefs
```
Scaled coefs
```{r ML12stestcoef, cache=cachex, echo = TRUE}
fit.sl$coef
```
```{r ML12stestcoef2b, cache=cachex, echo = TRUE}
sum(fit.sl$coef)
```
Hence, in creating superlearner prediction column,
a. Linear regression has no contribution
b. lasso has majority contribution
c. gradient boosting of tree has some minimal contribution
- A new prediction column is produced based on the fitted values from this meta regression.
You can simply multiply these coefs to the predictions from candidate learners, and them sum them to get ensable SL. Here are the first 6 values:
```{r ML12stestb0, cache=cachex, echo = TRUE}
SL.ens <- t(t(Yhat)*fit.sl$coef)
head(SL.ens)
as.matrix(head(rowSums(SL.ens)), ncol = 1)
```
Alternatively, you can get them directly from the package: here are the first 6 values
```{r ML12stestb, cache=cachex, echo = TRUE}
head(all.pred$pred)
```
The last column is coming from Ensamble SL.
### G-comp step 2: Extract outcome prediction as if everyone is treated
We are going to use **Ensamble SL** predictions in the following calculations. If you wanted to use discrete SL predictions instead, that would be fine too.
```{r ML12s, cache=cachex, echo = TRUE}
ObsData.noY$A <- 1
ObsData$Pred.Y1 <- predict(fit.sl, newdata = ObsData.noY,
type = "response")$pred
summary(ObsData$Pred.Y1)
```
### G-comp step 3: Extract outcome prediction as if everyone is untreated
```{r ML13s, cache=cachex, echo = TRUE}
ObsData.noY$A <- 0
ObsData$Pred.Y0 <- predict(fit.sl, newdata = ObsData.noY,
type = "response")$pred
summary(ObsData$Pred.Y0)
```
### G-comp step 4: Treatment effect estimate
```{r ML13bs, cache=cachex, echo = TRUE}
ObsData$Pred.TE <- ObsData$Pred.Y1 - ObsData$Pred.Y0
```
Mean value of predicted treatment effect
```{r reg2acnx1bs, cache=cachex, echo = TRUE}
TE3 <- mean(ObsData$Pred.TE)
TE3
summary(ObsData$Pred.TE)
```
### Additional details for SL
#### Choice of K
- simplest cross-validation splits the data into $K=2$ parts, but can go higher.
- select $K$ judiciously
- large sample size means small $K$ may be adequate
- for $n \lt 10,000$ consider $K=3$
- for $n \lt 500$ consider $K=20$
- smaller sample size means larger $K$ may be necessary
- for $n \lt 30$ consider leave 1 out
#### Alternative to CV
- other similar algorithms such as **cross-fitting** had been shown to have better performances
#### Rare outcome
- for rare outcomes, consider using **stratification** to attempt to maintain training and test sample ratios the same
#### Dependant sample
- if data is clustered and not independent and identically distributed, use ID for the **cluster**
#### Choice of meta learner method
It is easy to show that, depending on the choice of meta-learners, the coefficients of the meta learners can be slightly different.
```{r ML12lossf, cache=cachex, echo = TRUE}
fit.sl2 <- recombineSL(fit.sl, Y = Y,
method = "method.NNLS2")
fit.sl2$coef
fit.sl2 <- recombineSL(fit.sl, Y = Y,
method = "method.CC_LS")
fit.sl2$coef
fit.sl4 <- recombineSL(fit.sl, Y = Y,
method = "method.CC_nloglik")
fit.sl4$coef
```
- `method.CC_LS` is [suggested](https://si.biostat.washington.edu/sites/default/files/modules/lab1_0.pdf) as a good method for continuous outcome
- `method.CC_nloglik` is [suggested](https://si.biostat.washington.edu/sites/default/files/modules/lab1_0.pdf) as a good method for binary outcome
```{r, cache=TRUE, echo = TRUE}
saveRDS(TE1, file = "data/gcompxg.RDS")
saveRDS(TE2, file = "data/gcompls.RDS")
saveRDS(TE3, file = "data/gcompsl.RDS")
```